版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IBMInstituteforBusinessValue|ResearchInsights
Cloud-enabledmanufacturing
OperationsandITleaders
turnambitionintoadvantage
Incollaborationwith
HowIBMcanhelp
IBMcanhelpmanufacturersleveragehybridcloud,AI,andautomationtoachievenewlevelsofbusinessagility.Wehelpyousetyourdirectionbasedona
time-testedIndustry4.0referencearchitectureandindustrystandards,achievescalebyconsistently
deployingadvancedshop-floortechnologiesonanopenplatform,andunleashoptimumvalueby
selectingmanufacturingprocessusecasesto
addressimmediateneeds.Formoreinformation,
visit/industries/manufacturing
HowAWScanhelp
AWShelpsleadingmanufacturerstransformtheir
operationswiththemostadvancedsetofcloud
solutions,includingmachinelearning,IoT,robotics,andanalytics.AWSallowsyoutofocusyour
resourcesonoptimizingproduction,creatingnew
smartproducts,andimprovingoperational
efficienciesacrossthevaluechain,notontheinfrastructuretomakeithappen.Formore
information,visit
/manufacturing/
1
Key
takeaways
Advanceddigitaltechnologies
underpinnedbycloudcanpowermanufacturing
transformation.
Nearlyhalf(48%)ofsurveyed
manufacturersindicatetheycanharnessmorevaluefromcloud.
Companiesneedtopivotfromafocusoncostsavings
forisolatedcloudusecasestoanend-to-end,outcome-drivencloudstrategy.
Innovativemanufacturersareleveragingcloudtobuilda
foundationfordigitaldexterity.
Asubgroupoftopperformershaveimplementeda
data-drivenculture1.7timesmorethantheirclosestpeergroup,positioningthemtoembraceemergingtechnologiesthatdriveoperationaltransformation.
Cloud-enableddigitaltechnologiessuchasAIandIoTcatalyze
reinvention.
Leadingmanufacturersaremodernizingbothhowtheyworkandthetechtoolstheyusewhileinvestinginthedigitalskillsoftheirworkforcetoelevateperformanceandproduction.
2
Capturingcloud’spotential
AstheIndustry4.0eraevolves,manufacturingorganizationshavebeensteadilyembracingcloudcomputing,withmostreporting
significantimplementationprogressin2022.1
ButrecentinsightsfromtheIBMInstituteforBusinessValue(IBMIBV)andAmazonWebServices(AWS)suggestthatmanymanufacturingorganizationsmaynot
beoptimizingthevalue—andopportunity—ofcloudasthecornerstonefordigitaltransformation.Inourglobalsurveyofmanufacturers,onlyhalf(52%)oftheirITexecutivessaytheirorganizationsareharnessingcloud’sbenefits.
Whatisholdingthemback?Threereasonsstandoutinourresearch:
–Asurprisinglylownumberofmanufacturingworkloadshavebeenmigratedtothecloud,hinderingadvancedoperationalinitiativeswherecloudcanbeakeyenabler.
–Somemanufacturerslackintegratedtechnologystrategiesthatincludecloud,AI,IoT,andapplicationmodernizationformanufacturingactivities.
–Somerespondentshavefocusedstrictlyoncostsavingsversusadditionalbusinessoutcomes,suchasimprovingperformanceandincreasingvalueacrosscore
manufacturingoperations.
Thelessonformanufacturers?Merelyadoptingcloudforsimplelift-and-shift
workloadsorstandaloneusecasesisnotenough.Amoreoutcome-drivenapproach
canhelpthemrealizebenefitssuchasboostingproductivity,quality,machineavailability,andsustainability,aswellasacceleratingengineeringeffortsandproductlifecyclemanagement.
Organizationsaretacklingthenextphaseofcomplextechnology-poweredinitiatives—includingsupplychainorchestration,qualityanalysisandresolution,materialsand
productionoptimization,andpredictivemonitoringofassets.Andtheyarelearning
thattheserequireintegrationofdata,security,andexponentialtechnologies,withthecloudasthefoundationtomakeinnovationpossible—andpowerful.Infact,our
researchhasshownthatcombiningcloudcomputingwiththeseotherleversof
businesstransformationcangenerate13timesgreaterbenefitsthancloudalone.2
Withoutamorestrategic,value-drivenapproachtocloud,digitaltransformationinmanufacturingbecomesmorechallenging.Toexplorehowmanufacturing
organizationscanunleashmorevaluefromcloudandtheadvancedtechnologiesit
enables,weanalyzedsurveyresponsesfrombothmanufacturingandITexecutivesatmorethan1,100manufacturingcompaniesworldwidetoassesstheirorganizations’digitaltechnologymaturityanddatamaturity.Respondentsworkinautomotive,
electronics,downstreamoilandgas,chemicals,metals,andindustrialmachinery(see“Studyapproachandmethodology”onpage32).Ouranalysisresultedinfourarchetypes(seeFigure1):
–ConstrainedOperators:behindtheirpeersinbothdigitaltechnologyanddatamanagement
–DigitalEnthusiasts:committedtodigitaltransformationbutlaggingintheirdatapractices
–Data-focusedDeciders:investedindatamanagementbutlackingtechnologyenablement
–TransformationalOptimizers:leveragingdataandtechnologytodrivesuccess.
FIGURE1
Manufacturers’maturityinleveragingdataanddigitaltechnologiesisdefininghowtheyunlockcloud’sdeepervalue.
Highdatamaturity
DD
Data-focusedDeciders
27%ofrespondents
TO
TransformationalOptimizers
27%ofrespondents
Lowdigital
technologymaturity
CO
ConstrainedOperators
22%ofrespondents
DE
Digital
Enthusiasts
24%ofrespondents
Highdigitaltechnologymaturity
Lowdatamaturity
Source:IBMInstituteforBusinessValue
3
Wethenpinpointedfivetraitsthatdistinguish
TransformationalOptimizers,positioningthemtooutperformtheothergroupsinkeyperformancemetricsandachievecloud-drivenbenefits:
–Amoderncloudplatform
–Arobustdatafoundation
–Digitaltechnologyintegration
–Newwaysofworking
–Businessoutcomeslinkedtocloud.
Thisreportdivesdeeperintoeachoftheseattributes,describingthearchetypes’effortsineachareato
supporttheiroperationalpriorities.Anactionguideoffersathree-stepplanformovingforwardbasedonamanufacturer’smaturityindigitaltechnologiesanddatamanagement.
4
Whyhaveonlyhalfofmanufacturingorganizationsharvestedbusiness
outcomesfromcloud?
3in4ofapplication/
systemworkloadsformanufacturing-relatedoperationshavenot
beenmigratedtocloud
3in4oforganizationshavenotestablishedintegrated
technologystrategiesacrosscloud,AI,andapplication
modernizationfor
manufacturingactivities
3in5manufacturing
andITleaderssaytheir
organizationsdonotfocusonbusinessoutcomes
oftechnologyinitiatives
ITQ.Whatpercentageofyourapplications/systemsworkloadshavebeenmigratedfromthedatacenter(s)toyourcloudestate?ITQ.Describeyourorganization’stechnologystrategiesforthefollowingactivities.ManufacturingQandITQ.Towhatextentdoyouagreewiththefollowingstatements:ITandmanufacturingfocusonthebusinessoutcomesoftechnologyinitiatives;
percentagesshowresponsesof4and5ona5-pointscalewhere1=stronglydisagreeand5=stronglyagree.
5
Traitsthattransformmanufacturing
Trait#1
Amodern
cloudplatform
Digitaltransformationisfacilitatedbyhybridcloud,whichcombinesandunifiespubliccloud,privatecloud,andon-premisesenvironmentstocreateasingle,flexible,
cost-optimalITinfrastructurethatenablesorganizationstoprocessdatawhereit
makesthemostsense.3Itenablesreal-timedatacollectedfromsensors,devices,
andmachinesonthefactoryfloortobeusedbyotherfactoryassets,aswellassharedacrossothercomponentsintheenterprisesoftwarestack,includingERPandother
businessmanagementsoftware.4
Similarly,cloudsupportstherequiredITworkloads,suchasoperationaltechnology(OT)-ITintegration,edgeanalytics,OTsecurity,andbothnewandtraditionalapplica-tions.Datafromdifferentmanufacturingoperationscanbecentralized,allowing
cross-factoryinsights,KPIcomparison,andoptimization.5Inadditiontobasiccloud
infrastructureadvantages,morethan60%ofexecutivesinoursurveysaythatadvancedcloudcapabilitiessuchascontainers,portability,andDevSecOpsareanimperativeforsuccess.
Butformanymanufacturers,theircurrentcloudarchitectureinsufficiently
supportsmostoftheirprimaryinitiatives,makingitdifficulttoorchestratethe
multipledigitaltechnologiesrequiredforimplementingthesepriorities(seeFigure2).
Forinstance,predictivemanagementofassetsmightrequirethecloud,IoT,AI,and5G.Manufacturingqualityrootcauseneedsthecloud,IoT,AI,computervision,
andedgecomputing.Withoutthecloudunderpinningtheothertechnologies,theseinitiativescouldstallorevenfail.
FIGURE2
Executivesreporttheircloudarchitectureisinadequateforsomeoftheirmostimportanttechnologyinitiatives.
Importanceofinitiative
Cloudarchitecturesupportive
Importanceofoperationaltechnologyinitiatives
versushavingasupportivecloudarchitectureinplace*
58%
Supplyorchestration
44%
Gap
57%
Manufacturingqualityrootcause
50%
Gap
Materialsoptimization
55%
49%
Gap
54%
Productionoptimization
52%
Supportive
Predictiveassetmonitoringand
performancemanagement51%
48%
Supportive
Manufacturingqualityresolution
51%
40%
Gap
Transportationoptimization
50%
46%
Supportive
*Agapisdefinedasapercentagepointdifferenceofmorethan5%.
ManufacturingQ.Howimportantarethefollowingoperationaltechnologyinitiativestoyourorganization?Percentagesshowresponsesof4and5
ona5-pointscalewhere1=notatallimportantand5=extremely
important.ITQ.Towhatextentdoesyourcloudarchitecturesupportyouroperationalinitiatives?Percentagesshowresponsesof4and5ona
5-pointscalewhere1=notatalland5=toaverylargeextent.
7
TransformationalOptimizershavemadethemostprogressinimplementingcloudtechnologiestosupportadvancedoperationalinitiatives(seeFigure3).Takesupply
orchestrationforexample—acriticalareagiventhataNationalAssociationof
Manufacturerssurveyfoundnearly80%ofmanufacturerscitedsupplychain
disruptionsastheirnumber-onebusinesschallenge.6TransformationalOptimizersreporttheircloudarchitecturesupportssupplyorchestration1.5timesmoreoftenthanpeers.Theyaregainingreal-timetrackingtomonitorandmanagetheflowofmaterialsandtrackworkinprogressandfinishedgoods.Withthisinsight,theycanpreventinventoryissuesbyinterveningwhenanissueoccurs.Manufacturing
executivesestimatethatoptimizedsupplyorchestrationcanyield37%lowersupplychaincosts.
Likewise,TransformationalOptimizersreporttheircloudarchitecturesupportsmanufacturingqualityrootcauseinitiatives1.4timesmoreoftenthanpeers.
Theabilitytoidentifyproblemsordefectsinmanufacturingprocessesandautomaterectificationtranslatestodeterminingthecauseofaproblemfasterandmitigating
recurringissues.Executivesestimatethisfocuscanreducethecostimpactofpoorqualityby57%.
TransformationalOptimizersarealsobetterpositionedforpredictivemanagementofassets—aprioritythatexecutivessaycanincreaseassetavailabilityby52%.
Usingdataandanalytics,predictivecapabilitieshelpfacilitateassetutilizationandavoidcostlydowntimeandrepairs.
8
FIGURE3
TransformationalOptimizersclaimamoremature
cloudarchitecturetosupportoperationaltechnologyinitiatives.
Percentthatsaytheircloudarchitecturesupportstheseoperationaltechnologyinitiatives
38%
TO
DE
CO
DD
36%43%60%
TO
DD
DE
CO
42%45%48%62%
TO
DD
CO
42%49%54%
51%
TO
DD
CO
DE
48%52%56%
47%
TO
DE
CO
DD
35%48%58%
TO
CO
DE
DD
26%34%45%50%
46%
TO
DD
CO
DE
47%52%
38%
Supplyorchestration
Manufacturingqualityrootcause
Materialsoptimization
Productionoptimization
Predictiveassetmonitoringandperformance
management
Manufacturingqualityresolution
Transportationoptimization
ConstrainedOperators
Digital
Enthusiasts
Data-focusedDeciders
TransformationalOptimizers
ITQ.Towhatextentdoesyourcloudarchitecturesupportyour
operationalinitiatives?Percentagesshowresponsesof4and5ona5-pointscalewhere1=notatalland5=toaverylargeextent.
Casestudies
Volkswagentransforms
manufacturingandlogistics7
IBMSystemsManufacturingscalesAIvaluebycombininghybridcloudwithedge
computing8
Totransformitsautomotivemanufacturingand
logisticsprocesses,theVolkswagenGroupbuilttheVolkswagenIndustrialCloudonAWS,whichuses
AWSIoTservicestoconnectdatafrommachines,
plants,andsystemsacrossmorethan120factory
sites.TheVolkswagenIndustrialCloudaimstoyielda30%increaseinproductivity,30%decreasein
factorycosts,andsaveover$1billioninsupplychaincosts.TheGroupisalsousingAWStoexpandbeyondmanufacturingintoride-sharingservices,connected
vehicles,andimmersive,virtualcar-shoppingexperiencestoshapethefutureofmobility.
RatherthanbuildanisolatedAIsolution,IBM
SystemsManufacturingcombinedhybridcloud
withedgecomputingtoscalethevalueofAIacrosstheglobalmanufacturingenterprise.Itdeployeda
first-of-its-kindAIvisualinspectionsystemonassemblylinesinplantsinCanada,Hungary,Mexico,andtheUS.
Thesolutionleveragescloudandedgecomputingtoeliminatebandwidthandlatencyissuesthatarise
fromrunningAIinferencinginadatacenter.TheAImodelsaredeployedtoedgedeviceswhereimagedataisprocessed,enablingthecompanytodetectanomaliesandactontheminrealtime.
AImodelsandedgedevicesaremanagedfroma
centrallocationthroughthecloud,anautomated
processthatreducessoftwaremaintenancecostsby20%.Comparedtoahumaninspector,AIautomationreducedinspectiontimesfrom10minutestoone
minuteinoneusecase.
10
Trait#2
Arobustdatafoundation
Manufacturershavemorethanenoughdatatofuelfar-reachingoperationalchanges,butapproximately90%ofthatdatastagnatesinisolatedsystems.9Cloudcomputingflipsthescript,enablingmanufacturerstocultivateaculturewherehigh-qualitydata
isdemocratizedandemployeesareskilledindigitaltechnologies.Datafrom
equipment,processes,andsystemsfeedsdeeperinsightsthatdrivecontinuousprocessimprovement.
TransformationalOptimizersdemonstratethegreatestdatamaturity,havingimplementedadata-drivenculture1.7timesmorethantheirclosestpeer—Data-focusedDeciders—and2.9timesmorethanConstrainedOperators.
Theseleadersareleveragingthecloudandothertechnologiestostrengthendatamanagementpractices(seeFigure4).Forexample,nearlytwo-thirds(63%)of
TransformationalOptimizershaveteamsofdataexpertswhoareskilledincloudservices,andtheyhavenearreal-timecapabilitiestoupdatedatarepositories.Thishelpsensurethatemployeescantapintothemostcurrentdataforinsightsthatpowerimprovedfactoryoperations.
11
FIGURE4
Cloudunderpinsstrongdatamanagementpracticesto
sharpenfactoryoperations.
43%
TO
DE
CO
DD
Teamsofdataexperts
arepro?cientwithcloudservices
Near-toreal-timeupdatestodata
repositories
APIsareusedfor
internaldata-sharingactivities
APIsareexposedtosharedatawithanecosystemofthirdparties
Sensitivedatahasbeenmigratedandencryptedincloud
45%
51%63%
TO
CO
DD
26%38%
52%
TO
DE
DD
CO
33%40%43%
51%
TO
DD
CO
DE
49%
31%36%40%
TO
CO
DE
DD
Percentthatareimplementingthesedatamanagementpractices
25%29%40%49%
ConstrainedOperators
Digital
Enthusiasts
Data-focusedDeciders
TransformationalOptimizers
ITQ.Towhatextentdoesyourmanufacturingorganizationusethefollowingdatamanagementpractices?Percentagesshowresponsesof4and5ona
5-pointscalewhere1=notatalland5=toaverylargeextent.
Casestudy
PanasonicConnect
conquerscomplexitywithshop-flooranalytics10
Tosupportchipmanufacturersadaptingtonewsemiconductorpackaging
trends,PanasonicConnecthasinfusedadvancedanalyticsintotwoprocesscontrolsolutionsthathaveemergedasthecompany’sfirstsmart-factoryofferings.
Thefirstsolutioncreatedanadvancedplasmadicer—aspecializedtoolformoreprecisecuttingandprocessingofsemiconductorwafers—byfully
automatingthe“recipe”generation,whichdeterminestheoptimal
combinationofdecisionsonvariablesthataffecttheprocess.Thissolutionreducedthedevelopmentcycletimebyasmuchas30%.
Thesecondsolutionoptimizedplasmacleanermachineperformance
throughsmarter,data-drivenmaintenancepractices.Thecombinationofreducedunnecessarymaintenance,proactivepartsordering,andfewermachineoutageshelpeddecreasemaintenancecostsformanufacturingcustomersby50%.
Data-drivenmaintenancepracticeshelpeddecreasemaintenancecostsfor
manufacturingcustomersby50%.
Trait#3
Digital
technologyintegration
Manufacturersrecognizetheimportanceofdigitaltechnologiestotheirinitiatives.
IoTsensorsmonitorplantproduction,energyconsumption,inventory,andasset
maintenance.Additivemanufacturing—alsoknownas3Dprinting—enablescreationofbespokepartsandsupportsagiledesignchanges.AIhelpsautomatemanufacturing
productionprocessesandimprovequalitycontrol,whilethegrowthofgenerativeAIopensthedoortoevenmoreadvancedAIusecases(seePerspective,“AnticipatingtheboostfromgenerativeAI”onpage17).
Thesetechnologies,whendeployedinconcert,propelinnovation.Thecloudenablesthatintegration.TransformationalOptimizersareintegratingthecloudwithenablingtechnologiestoagreaterextentthanpeersinallareasexceptAI,whereData-focusedDecidersarelikelycapitalizingontheircommitmenttodata(seeFigure5).
13
14
FIGURE5
Cloudplatformsenableintegrationofdigitaltechnologiestospurinnovation.
Percentthatareintegratingthesedigitaltechnologieswithcloudplatforms
53%
TO
DD
CO
DE
63%66%
55%
TO
DD
DE
CO
51%
57%
48%
39%
57%
DE
TO
DD
CO
59%
43%
49%
TO
DD
CO
DE
42%
46%
60%
56%
TO
DD
DE
CO
35%
45%
25%
40%
30%
TO
CO
DE
DD
32%
46%
38%
TO
DE
DD
26%
48%
45%
InternetofThings
Roboticprocessautomation
Additivemanufacturing(3D)
AI
Robots
Edgecomputing
5G
ConstrainedOperators
Digital
Enthusiasts
Data-focusedDeciders
TransformationalOptimizers
ITQ.Towhatextentdoyourcloudplatformsintegratewiththe
followingdigitaltechnologiesinyourmanufacturingorganization?Percentagesshowresponsesof4and5ona5-pointscalewhere
1=notatalland5=toaverylargeextent.
OnetechnologythatfusesthepowerofIoTandbothtraditionalandgenerativeAIforenormouspotentialbenefitstothemanufacturingindustryisdigitaltwins.Offeringavirtualrepresentationofasystemacrossitslifecycleandupdatedfromreal-timedata,digitaltwinsusesimulation,machinelearning,andreasoningtostrengthendecision-makinganddriveefficiency,innovation,andcompetitiveness.11Transformational
Optimizersareusingdigitaltwinsdramaticallymorethantheirpeers(seeFigure6).
FIGURE6
Leadingmanufacturersusedigitaltwinstocombinereal-timesimulationandcontrols.
Useofdigitaltwinsinmanufacturingoperations
38%
ProductionoptimizationQualitymanagementPredictivemaintenance
TransformationalOptimizers
56%62%60%
Data-focusedDeciders
47%
Digital
Enthusiasts
25%
38%
48%
ConstrainedOperators
23%
33%
49%
42%
ManufacturingQ.Towhatextenthasyourorganizationuseddigitaltwinsinthefollowingareasofyourmanufacturingoperations?
15
Percentagesshowresponsesof4and5ona5-pointscalewhere1=notatalland5=toaverylargeextent.
16
Similarly,TransformationalOptimizersreportheightenedsecurityreadinessthroughthecloud(seeFigure7).TheyrecognizethatthecombinationofAIandthecloudis
criticaltodefendingagainstcyberthreats.AsITandOTbecomemoreintertwined,
theOTnetworkandconnectedOTdevicesareincreasinglyexposedtosecurityrisks,whileremoteaccesstoOTnetworksbyoutsidevendorsfurtherexpandsvulnerabil-ities.Infact,IBMX-Force?reportedthatmanufacturingcontinuedtobethetop
attackedindustryin2022.12
FIGURE7
TransformationalOptimizersarebuildingcyberresiliencewithrobustsecuritypractices.
Adoptionofsecuritypractices
44%
AmatureOTorICSpatchmanagementprogramisinplace
RobustOT/industrial
controlsystem(ICS)assetinventoryisdeveloped
Incidentsaremanagedwithauni?edAIautomation
acrossenvironments
TransformationalOptimizers
63%62%58%
Data-focusedDeciders
39%
Digital
Enthusiasts
35%
43%
49%
Constrained
Operators
26%
29%
40%
47%
ITQ.Towhatextenthasyourmanufacturingorganization
adoptedthefollowingsecuritypractices?Percentagesshowresponsesof4and5ona5-pointscalewhere1=notatalland5=toaverylargeextent.
Perspective
Anticipatingtheboostfrom
generativeAIinmanufacturing
OurstudyrevealsthatmanufacturingexecutivesexpectgenerativeAItoimprovemanufacturingprocessesacrossarangeofareas(seefigure).
Foursignificantpillarsofimpactinclude:
Productionqualityandoptimization.GenerativeAIsystemscaningestalargeamountofproductiondataandproactivelydetectqualityissuesinproduction.
ThecombinationofIoTandgenerativeAIcanidentifyreal-timeanomaliesandoptimizeproduction
accordingly,ultimatelyimprovingoverallequipmenteffectiveness.
Sourcingandprocurement.Offthefactoryfloor,generativeAIcanassistwithvendordiscoveryandevaluation,pricing,supplychainriskassessment,andcontracts.
Predictivemaintenance.Withassetsensorscontinu-ouslymonitoringvariablessuchastemperature,flow,andpressure,generativeAImodelscanleveragethedatatorecognizethenormaloperationalbehaviorofequipmentandthenidentifydeviationstopredictandrectifyequipmentissues.
Productdesignanddevelopment.Anarrayof
alternativesforproducts,parts,components,and/ormaterialscanbecreatedbygenerativeAImodels.
Usingvariablesspecifiedbyengineerssuchascost
andoperationalcriteria,generativeAIalgorithmscanhelpcreateentirelynew,innovativedesigns.
OperationswhereexecutivesexpectgenerativeAItohaveanimpact
1 2 3
4
Identi?cation,design,anddevelopmentofproducts/parts/
5
ManufacturingQ.WheredoyouseegenerativeAIimpacting
yourmanufacturingoperations?Percentagesshow
responsesof4and5ona5-pointscalewhere1=verylowand5=veryhigh.
Casestudies
DoosanDigitalInnovationprotectsinvestmentin
digitaltransformation13
SRAMdrivesinnovationwithnext-generation
manufacturing14
DoosanDigitalInnovation(DDI)embracedtheideathataneffective,comprehensivecybersecurity
programshouldbethefoundationofdigitaltransfor-mation.Tothatend,thecompanyidentifiedand
mappedappropriaterolesandresponsibilitiesofitsstaffworkingwithinthesecurityinfrastructure.DDIalsoconsolidateditsregionalsecurityoperation
centers(SOCs)toaunified,globalSOCthatdelivers24x7monitoringandprotection.
TocontroltheoperationsoftheglobalSOC,DDI
updateditscoresecurityinfrastructure.Theteam
enhancedthecompany’sproactivesecurityincidentandeventmanagementefforts,deployingtechnol-ogiestooverseeendpointdetectionandresponse
anddeliveringAI-basedautomationthatfurther
streamlinesthreatresponses.Asaresult,thecompanyacceleratedthreatreactions,cuttingapproximately85%fromresponsetimes.
Toimprovethecyclingexperience,SRAM,abicyclecomponentmanufacturer,hasembracedtheuseof
newmaterialsandadvancedmanufacturing
techniques.WorkingwithAWSanditspartner
Autodesk,SRAMisleveraginggenerativedesign,whichisaformofAIthatusescloudcomputingtospeedtimetodesignandtimetomarketwhile
optimizingperformance.
Usinggenerativedesigntools,SRAMcannow
generatemultipleconceptsatthebeginningoftheprojectandthenevaluateeachtochoosetheonesmostpromisingtobeproducedusingadditive
manufacturing(3Dprinting).Thisapproachenabledthemtoproduceapartthatwastwiceasstrongand20%lighterinlesstimewithfewerresources.
19
Trait#4
Newwaysofworking
TransformationalOptimizershaveradicallychangedhowtheirorganizationsworkby:
–Investingindigitalanddataskills
–Trainingtheiremployeesindigitaltechnologies
–RedefiningtherelationshipbetweenmanufacturingandIT
–Establishinganoperatingmodelfortheircloudoperations.
Theyoutperformtheirpeersineachareaandgaintheaddedbenefitofmakingtraditionallymundanefactoriesmoreappealingtotechworkers.
Nurturingdigitalandtechnologyskills
Whileeacharchetypeisactivelyinvestingintechnologyskills,Transformational
Optimizersareaheadinallareas(seeFigure8).Theysensetheurgencyofhaving
employeeswhocanputintelligentautomation,data,anddigitaltechnologiestowork.
Threeinfivesaytheyaretrainingtheiremployeeswithdigitaltechnologiesand
intelligentmachines/devices,comparedtolessthanhalfoftheotherarchetypes.
FIGURE8
Manufacturingorganizationsareinvestingintheirworkforcestoclosethedigitalskillsgap.
Percentthatareinvestingintheseskillstosupportdigitalinitiatives
TO
DE
DD
45%
61%65%
TO
DE
DD
47%
55%
61%
TO
DE
DD
CO
30%39%42%53%
42%
TO
DE
CO
DD
43%
33%
48%
TO
CO
DE
DD
30%34%
39%44%
Cloudsecurity
Clouddeploymentandmigration
Roboticp
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版建筑工程公司施工人員勞務(wù)雇傭協(xié)議3篇
- 2025版全面升級(jí)商業(yè)綜合體物業(yè)租戶(hù)服務(wù)合同3篇
- 第9課《老人與?!吠骄毩?xí) 統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 2025年度個(gè)人汽車(chē)租賃與車(chē)輛租賃行業(yè)規(guī)范合同3篇
- 2025年度智能家居系統(tǒng)安裝與維護(hù)個(gè)人勞務(wù)承包合同4篇
- 2025年教育資源共享平臺(tái)代理招生合作框架協(xié)議4篇
- 2025年度螺桿機(jī)節(jié)能補(bǔ)貼申請(qǐng)與執(zhí)行合同4篇
- 2025年度綠色建筑節(jié)能改造項(xiàng)目安全生產(chǎn)與文明施工合作協(xié)議3篇
- 2025年林業(yè)資源承包經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同模板4篇
- 2025版污水處理廠污泥處理與資源化利用合作協(xié)議3篇
- 中央2025年國(guó)務(wù)院發(fā)展研究中心有關(guān)直屬事業(yè)單位招聘19人筆試歷年參考題庫(kù)附帶答案詳解
- 外呼合作協(xié)議
- 小學(xué)二年級(jí)100以?xún)?nèi)進(jìn)退位加減法800道題
- 保險(xiǎn)公司2025年工作總結(jié)與2025年工作計(jì)劃
- GB/T 33629-2024風(fēng)能發(fā)電系統(tǒng)雷電防護(hù)
- 2024淘寶天貓運(yùn)動(dòng)戶(hù)外羽絨服白皮書(shū)-WN8正式版
- 記賬實(shí)操-砂石企業(yè)賬務(wù)處理分錄
- 2024屆四川省瀘州市江陽(yáng)區(qū)八年級(jí)下冊(cè)數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 全球250個(gè)國(guó)家中英文名稱(chēng)及縮寫(xiě)
- 深靜脈血栓(DVT)課件
- 2023年四川省廣元市中考數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論