版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
WelcometoEconomics20
WhatisEconometrics?
Economics20-Prof.Anderson
WhystudyEconometrics?
Rareineconomics(andmanyotherareaswithoutlabs!)tohaveexperimentaldata
Needtousenonexperimental,orobservational,datatomakeinferences
Importanttobeabletoapplyeconomictheorytorealworlddata
Economics20-Prof.Anderson
WhystudyEconometrics?
Anempiricalanalysisusesdatatotestatheoryortoestimatearelationship
Aformaleconomicmodelcanbetested
Theorymaybeambiguousastotheeffectofsomepolicychange–canuseeconometricstoevaluatetheprogram
Economics20-Prof.Anderson
TypesofData–CrossSectional
Cross-sectionaldataisarandomsample
Eachobservationisanewindividual,firm,etc.withinformationatapointintime
Ifthedataisnotarandomsample,wehaveasample-selectionproblem
Economics20-Prof.Anderson
TypesofData–Panel
Canpoolrandomcrosssectionsandtreatsimilartoanormalcrosssection.Willjustneedtoaccountfortimedifferences.
Canfollowthesamerandomindividualobservationsovertime–knownaspaneldataorlongitudinaldata
Economics20-Prof.Anderson
TypesofData–TimeSeries
Timeseriesdatahasaseparateobservationforeachtimeperiod–e.g.stockprices
Sincenotarandomsample,differentproblemstoconsider
Trendsandseasonalitywillbeimportant
Economics20-Prof.Anderson
TheQuestionofCausality
Simplyestablishingarelationshipbetweenvariablesisrarelysufficient
Wanttotheeffecttobeconsideredcausal
Ifwe’vetrulycontrolledforenoughothervariables,thentheestimatedceterisparibuseffectcanoftenbeconsideredtobecausal
Canbedifficulttoestablishcausality
Economics20-Prof.Anderson
Example:ReturnstoEducation
Amodelofhumancapitalinvestmentimpliesgettingmoreeducationshouldleadtohigherearnings
Inthesimplestcase,thisimpliesanequationlike
Economics20-Prof.Anderson
Example:(continued)
Theestimateofb1,isthereturntoeducation,butcanitbeconsideredcausal?
Whiletheerrorterm,u,includesotherfactorsaffectingearnings,wanttocontrolforasmuchaspossible
Somethingsarestillunobserved,whichcanbeproblematic
Economics20-Prof.Anderson
TheSimpleRegressionModel
y=b0+b1x+u
Economics20-Prof.Anderson
SomeTerminology
Inthesimplelinearregressionmodel,wherey=b0+b1x+u,wetypicallyrefertoyasthe
DependentVariable,or
Left-HandSideVariable,or
ExplainedVariable,or
Regressand
Economics20-Prof.Anderson
SomeTerminology,cont.
Inthesimplelinearregressionofyonx,wetypicallyrefertoxasthe
IndependentVariable,or
Right-HandSideVariable,or
ExplanatoryVariable,or
Regressor,or
Covariate,or
ControlVariables
Economics20-Prof.Anderson
ASimpleAssumption
Theaveragevalueofu,theerrorterm,inthepopulationis0.Thatis,
E(u)=0
Thisisnotarestrictiveassumption,sincewecanalwaysuseb0tonormalizeE(u)to0
Economics20-Prof.Anderson
ZeroConditionalMean
Weneedtomakeacrucialassumptionabouthowuandxarerelated
Wewantittobethecasethatknowingsomethingaboutxdoesnotgiveusanyinformationaboutu,sothattheyarecompletelyunrelated.Thatis,that
E(u|x)=E(u)=0,whichimplies
E(y|x)=b0+b1x
Economics20-Prof.Anderson
.
.
x1
x2
E(y|x)asalinearfunctionofx,whereforanyx
thedistributionofyiscenteredaboutE(y|x)
E(y|x)=b0+b1x
y
f(y)
Economics20-Prof.Anderson
OrdinaryLeastSquares
Basicideaofregressionistoestimatethepopulationparametersfromasample
Let{(xi,yi):i=1,…,n}denotearandomsampleofsizenfromthepopulation
Foreachobservationinthissample,itwillbethecasethat
yi=b0+b1xi+ui
Economics20-Prof.Anderson
.
.
.
.
y4
y1
y2
y3
x1
x2
x3
x4
}
}
{
{
u1
u2
u3
u4
x
y
Populationregressionline,sampledatapoints
andtheassociatederrorterms
E(y|x)=b0+b1x
Economics20-Prof.Anderson
DerivingOLSEstimates
ToderivetheOLSestimatesweneedtorealizethatourmainassumptionofE(u|x)=E(u)=0alsoimpliesthat
Cov(x,u)=E(xu)=0
Why?RememberfrombasicprobabilitythatCov(X,Y)=E(XY)–E(X)E(Y)
Economics20-Prof.Anderson
DerivingOLScontinued
Wecanwriteour2restrictionsjustintermsofx,y,b0andb1,sinceu=y–b0–b1x
E(y–b0–b1x)=0
E[x(y–b0–b1x)]=0
Thesearecalledmomentrestrictions
Economics20-Prof.Anderson
DerivingOLSusingM.O.M.
Themethodofmomentsapproachtoestimationimpliesimposingthepopulationmomentrestrictionsonthesamplemoments
Whatdoesthismean?RecallthatforE(X),themeanofapopulationdistribution,asampleestimatorofE(X)issimplythearithmeticmeanofthesample
Economics20-Prof.Anderson
MoreDerivationofOLS
Wewanttochoosevaluesoftheparametersthatwillensurethatthesampleversionsofourmomentrestrictionsaretrue
Thesampleversionsareasfollows:
Economics20-Prof.Anderson
MoreDerivationofOLS
Giventhedefinitionofasamplemean,andpropertiesofsummation,wecanrewritethefirstconditionasfollows
Economics20-Prof.Anderson
MoreDerivationofOLS
Economics20-Prof.Anderson
SotheOLSestimatedslopeis
Economics20-Prof.Anderson
SummaryofOLSslopeestimate
Theslopeestimateisthesamplecovariancebetweenxandydividedbythesamplevarianceofx
Ifxandyarepositivelycorrelated,theslopewillbepositive
Ifxandyarenegativelycorrelated,theslopewillbenegative
Onlyneedxtovaryinoursample
Economics20-Prof.Anderson
MoreOLS
Intuitively,OLSisfittingalinethroughthesamplepointssuchthatthesumofsquaredresidualsisassmallaspossible,hencethetermleastsquares
Theresidual,??,isanestimateoftheerrorterm,u,andisthedifferencebetweenthefittedline(sampleregressionfunction)andthesamplepoint
Economics20-Prof.Anderson
.
.
.
.
y4
y1
y2
y3
x1
x2
x3
x4
}
}
{
{
??1
??2
??3
??4
x
y
Sampleregressionline,sampledatapoints
andtheassociatedestimatederrorterms
Economics20-Prof.Anderson
Alternateapproachtoderivation
Giventheintuitiveideaoffittingaline,wecansetupaformalminimizationproblem
Thatis,wewanttochooseourparameterssuchthatweminimizethefollowing:
Economics20-Prof.Anderson
Alternateapproach,continued
Ifoneusescalculustosolvetheminimizationproblemforthetwoparametersyouobtainthefollowingfirstorderconditions,whicharethesameasweobtainedbefore,multipliedbyn
Economics20-Prof.Anderson
AlgebraicPropertiesofOLS
ThesumoftheOLSresidualsiszero
Thus,thesampleaverageoftheOLSresidualsiszeroaswell
ThesamplecovariancebetweentheregressorsandtheOLSresidualsiszero
TheOLSregressionlinealwaysgoesthroughthemeanofthesample
Economics20-Prof.Anderson
AlgebraicProperties(precise)
Economics20-Prof.Anderson
Moreterminology
Economics20-Prof.Anderson
ProofthatSST=SSE+SSR
Economics20-Prof.Anderson
Goodness-of-Fit
Howdowethinkabouthowwelloursampleregressionlinefitsoursampledata?
Cancomputethefractionofthetotalsumofsquares(SST)thatisexplainedbythemodel,callthistheR-squaredofregression
R2=SSE/SST=1–SSR/SST
Economics20-Prof.Anderson
UsingStataforOLSregressions
Nowthatwe’vederivedtheformulaforcalculatingtheOLSestimatesofourparameters,you’llbehappytoknowyoudon’thavetocomputethembyhand
RegressionsinStataareverysimple,toruntheregressionofyonx,justtype
regyx
Economics20-Prof.Anderson
UnbiasednessofOLS
Assumethepopulationmodelislinearinparametersasy=b0+b1x+u
Assumewecanusearandomsampleofsizen,{(xi,yi):i=1,2,…,n},fromthepopulationmodel.Thuswecanwritethesamplemodelyi=b0+b1xi+ui
AssumeE(u|x)=0andthusE(ui|xi)=0
Assumethereisvariationinthexi
Economics20-Prof.Anderson
UnbiasednessofOLS(cont)
Inordertothinkaboutunbiasedness,weneedtorewriteourestimatorintermsofthepopulationparameter
Startwithasimplerewriteoftheformulaas
Economics20-Prof.Anderson
UnbiasednessofOLS(cont)
Economics20-Prof.Anderson
UnbiasednessofOLS(cont)
Economics20-Prof.Anderson
UnbiasednessofOLS(cont)
Economics20-Prof.Anderson
UnbiasednessSummary
TheOLSestimatesofb1andb0areunbiased
Proofofunbiasednessdependsonour4assumptions–ifanyassumptionfails,thenOLSisnotnecessarilyunbiased
Rememberunbiasednessisadescriptionoftheestimator–inagivensamplewemaybe“near”or“far”fromthetrueparameter
Economics20-Prof.Anderson
VarianceoftheOLSEstimators
Nowweknowthatthesamplingdistributionofourestimateiscenteredaroundthetrueparameter
Wanttothinkabouthowspreadoutthisdistributionis
Mucheasiertothinkaboutthisvarianceunderanadditionalassumption,so
AssumeVar(u|x)=s2(Homoskedasticity)
Economics20-Prof.Anderson
VarianceofOLS(cont)
Var(u|x)=E(u2|x)-[E(u|x)]2
E(u|x)=0,sos2=E(u2|x)=E(u2)=Var(u)
Thuss2isalsotheunconditionalvariance,calledtheerrorvariance
s,thesquarerootoftheerrorvarianceiscalledthestandarddeviationoftheerror
Cansay:E(y|x)=b0+b1xandVar(y|x)=s2
Economics20-Prof.Anderson
.
.
x1
x2
HomoskedasticCase
E(y|x)=b0+b1x
y
f(y|x)
Economics20-Prof.Anderson
.
x
x1
x2
y
f(y|x)
HeteroskedasticCase
x3
.
.
E(y|x)=b0+b1x
Economics20-Prof.Anderson
VarianceofOLS(cont)
Economics20-Prof.Anderson
VarianceofOLSSummary
Thelargertheerrorvariance,s2,thelargerthevarianceoftheslopeestimate
Thelargerthevariabilityinthexi,thesmallerthevarianceoftheslopeestimate
Asaresult,alargersamplesizeshoulddecreasethevarianceoftheslopeestimate
Problemthattheerrorvarianceisunknown
Economics20-Prof.Anderson
EstimatingtheErrorVariance
Wedon’tknowwhattheerrorvariance,s2,is,becausewedon’tobservetheerrors,ui
Whatweobservearetheresiduals,??i
Wecanusetheresidualstoformanestimateoftheerrorvariance
Economics20-Prof.Anderson
ErrorVarianceEstimate(cont)
Economics20-Prof.Anderson
ErrorVarianceEstimate(cont)
Economics20-Prof.Anderson
MultipleRegressionAnalysis
y=b0+b1x1+b2x2+...bkxk+u
1.Estimation
Economics20-Prof.Anderson
ParallelswithSimpleRegression
b0isstilltheintercept
b1tobkallcalledslopeparameters
uisstilltheerrorterm(ordisturbance)
Stillneedtomakeazeroconditionalmeanassumption,sonowassumethat
E(u|x1,x2,…,xk)=0
Stillminimizingthesumofsquaredresiduals,sohavek+1firstorderconditions
Economics20-Prof.Anderson
InterpretingMultipleRegression
Economics20-Prof.Anderson
A“PartiallingOut”Interpretation
Economics20-Prof.Anderson
“PartiallingOut”continued
Previousequationimpliesthatregressingyonx1andx2givessameeffectofx1asregressingyonresidualsfromaregressionofx1onx2
Thismeansonlythepartofxi1thatisuncorrelatedwithxi2arebeingrelatedtoyisowe’reestimatingtheeffectofx1onyafterx2hasbeen“partialledout”
Economics20-Prof.Anderson
SimplevsMultipleRegEstimate
Economics20-Prof.Anderson
Goodness-of-Fit
Economics20-Prof.Anderson
Goodness-of-Fit(continued)
Howdowethinkabouthowwelloursampleregressionlinefitsoursampledata?
Cancomputethefractionofthetotalsumofsquares(SST)thatisexplainedbythemodel,callthistheR-squaredofregression
R2=SSE/SST=1–SSR/SST
Economics20-Prof.Anderson
Goodness-of-Fit(continued)
Economics20-Prof.Anderson
MoreaboutR-squared
R2canneverdecreasewhenanotherindependentvariableisaddedtoaregression,andusuallywillincrease
BecauseR2willusuallyincreasewiththenumberofindependentvariables,itisnotagoodwaytocomparemodels
Economics20-Prof.Anderson
AssumptionsforUnbiasedness
Populationmodelislinearinparameters:y=b0+b1x1+b2x2+…+bkxk+u
Wecanusearandomsampleofsizen,{(xi1,xi2,…,xik,yi):i=1,2,…,n},fromthepopulationmodel,sothatthesamplemodelisyi=b0+b1xi1+b2xi2+…+bkxik+ui
E(u|x1,x2,…xk)=0,implyingthatalloftheexplanatoryvariablesareexogenous
Noneofthex’sisconstant,andtherearenoexactlinearrelationshipsamongthem
Economics20-Prof.Anderson
TooManyorTooFewVariables
Whathappensifweincludevariablesinourspecificationthatdon’tbelong?
Thereisnoeffectonourparameterestimate,andOLSremainsunbiased
Whatifweexcludeavariablefromourspecificationthatdoesbelong?
OLSwillusuallybebiased
Economics20-Prof.Anderson
OmittedVariableBias
Economics20-Prof.Anderson
OmittedVariableBias(cont)
Economics20-Prof.Anderson
OmittedVariableBias(cont)
Economics20-Prof.Anderson
OmittedVariableBias(cont)
Economics20-Prof.Anderson
SummaryofDirectionofBias
Positivebias
Negativebias
b2<0
Negativebias
Positivebias
b2>0
Corr(x1,x2)<0
Corr(x1,x2)>0
Economics20-Prof.Anderson
OmittedVariableBiasSummary
Twocaseswherebiasisequaltozero
b2=0,thatisx2doesn’treallybelonginmodel
x1andx2areuncorrelatedinthesample
Ifcorrelationbetweenx2,x1andx2,yisthesamedirection,biaswillbepositive
Ifcorrelationbetweenx2,x1andx2,yistheoppositedirection,biaswillbenegative
Economics20-Prof.Anderson
TheMoreGeneralCase
Technically,canonlysignthebiasforthemoregeneralcaseifalloftheincludedx’sareuncorrelated
Typically,then,weworkthroughthebiasassumingthex’sareuncorrelated,asausefulguideevenifthisassumptionisnotstrictlytrue
Economics20-Prof.Anderson
VarianceoftheOLSEstimators
Nowweknowthatthesamplingdistributionofourestimateiscenteredaroundthetrueparameter
Wanttothinkabouthowspreadoutthisdistributionis
Mucheasiertothinkaboutthisvarianceunderanadditionalassumption,so
AssumeVar(u|x1,x2,…,xk)=s2(Homoskedasticity)
Economics20-Prof.Anderson
VarianceofOLS(cont)
Letxstandfor(x1,x2,…xk)
AssumingthatVar(u|x)=s2alsoimpliesthatVar(y|x)=s2
The4assumptionsforunbiasedness,plusthishomoskedasticityassumptionareknownastheGauss-Markovassumptions
Economics20-Prof.Anderson
VarianceofOLS(cont)
Economics20-Prof.Anderson
ComponentsofOLSVariances
Theerrorvariance:alargers2impliesalargervariancefortheOLSestimators
Thetotalsamplevariation:alargerSSTjimpliesasmallervariancefortheestimators
Linearrelationshipsamongtheindependentvariables:alargerRj2impliesalargervariancefortheestimators
Economics20-Prof.Anderson
MisspecifiedModels
Economics20-Prof.Anderson
MisspecifiedModels(cont)
Whilethevarianceoftheestimatorissmallerforthemisspecifiedmodel,unlessb2=0themisspecifiedmodelisbiased
Asthesamplesizegrows,thevarianceofeachestimatorshrinkstozero,makingthevariancedifferencelessimportant
Economics20-Prof.Anderson
EstimatingtheErrorVariance
Wedon’tknowwhattheerrorvariance,s2,is,becausewedon’tobservetheerrors,ui
Whatweobservearetheresiduals,??i
Wecanusetheresidualstoformanestimateoftheerrorvariance
Economics20-Prof.Anderson
ErrorVarianceEstimate(cont)
df=n–(k+1),ordf=n–k–1
df(i.e.degreesoffreedom)isthe(numberofobservations)–(numberofestimatedparameters)
Economics20-Prof.Anderson
TheGauss-MarkovTheorem
Givenour5Gauss-MarkovAssumptionsitcanbeshownthatOLSis“BLUE”
Best
Linear
Unbiased
Estimator
Thus,iftheassumptionshold,useOLS
Economics20-Prof.Anderson
MultipleRegressionAnalysis
y=b0+b1x1+b2x2+...bkxk+u
2.Inference
Economics20-Prof.Anderson
AssumptionsoftheClassicalLinearModel(CLM)
Sofar,weknowthatgiventheGauss-Markovassumptions,OLSisBLUE,
Inordertodoclassicalhypothesistesting,weneedtoaddanotherassumption(beyondtheGauss-Markovassumptions)
Assumethatuisindependentofx1,x2,…,xkanduisnormallydistributedwithzeromeanandvariances2:u~Normal(0,s2)
Economics20-Prof.Anderson
CLMAssumptions(cont)
UnderCLM,OLSisnotonlyBLUE,butistheminimumvarianceunbiasedestimator
WecansummarizethepopulationassumptionsofCLMasfollows
y|x~Normal(b0+b1x1+…+bkxk,s2)
Whilefornowwejustassumenormality,clearthatsometimesnotthecase
Largesampleswillletusdropnormality
Economics20-Prof.Anderson
.
.
x1
x2
Thehomoskedasticnormaldistributionwith
asingleexplanatoryvariable
E(y|x)=b0+b1x
y
f(y|x)
Normal
distributions
Economics20-Prof.Anderson
NormalSamplingDistributions
Economics20-Prof.Anderson
ThetTest
Economics20-Prof.Anderson
ThetTest(cont)
Knowingthesamplingdistributionforthestandardizedestimatorallowsustocarryouthypothesistests
Startwithanullhypothesis
Forexample,H0:bj=0
Ifacceptnull,thenacceptthatxjhasnoeffectony,controllingforotherx’s
Economics20-Prof.Anderson
ThetTest(cont)
Economics20-Prof.Anderson
tTest:One-SidedAlternatives
Besidesournull,H0,weneedanalternativehypothesis,H1,andasignificancelevel
H1maybeone-sided,ortwo-sided
H1:bj>0andH1:bj<0areone-sided
H1:bj??0isatwo-sidedalternative
Ifwewanttohaveonlya5%probabilityofrejectingH0ifitisreallytrue,thenwesayoursignificancelevelis5%
Economics20-Prof.Anderson
One-SidedAlternatives(cont)
Havingpickedasignificancelevel,a,welookupthe(1–a)thpercentileinatdistributionwithn–k–1dfandcallthisc,thecriticalvalue
Wecanrejectthenullhypothesisifthetstatisticisgreaterthanthecriticalvalue
Ifthetstatisticislessthanthecriticalvaluethenwefailtorejectthenull
Economics20-Prof.Anderson
yi=b0+b1xi1+…+bkxik+ui
H0:bj=0H1:bj>0
c
0
a
(1-a)
One-SidedAlternatives(cont)
Failtoreject
reject
Economics20-Prof.Anderson
One-sidedvsTwo-sided
Becausethetdistributionissymmetric,testingH1:bj<0isstraightforward.Thecriticalvalueisjustthenegativeofbefore
Wecanrejectthenullifthetstatistic<–c,andifthetstatistic>than–cthenwefailtorejectthenull
Foratwo-sidedtest,wesetthecriticalvaluebasedona/2andrejectH1:bj??0iftheabsolutevalueofthetstatistic>c
Economics20-Prof.Anderson
yi=b0+b1Xi1+…+bkXik+ui
H0:bj=0H1:bj>0
c
0
a/2
(1-a)
-c
a/2
Two-SidedAlternatives
reject
reject
failtoreject
Economics20-Prof.Anderson
SummaryforH0:bj=0
Unlessotherwisestated,thealternativeisassumedtobetwo-sided
Ifwerejectthenull,wetypicallysay“xjisstatisticallysignificantatthea%level”
Ifwefailtorejectthenull,wetypicallysay“xjisstatisticallyinsignificantatthea%level”
Economics20-Prof.Anderson
Testingotherhypotheses
AmoregeneralformofthetstatisticrecognizesthatwemaywanttotestsomethinglikeH0:bj=aj
Inthiscase,theappropriatetstatisticis
Economics20-Prof.Anderson
ConfidenceIntervals
Anotherwaytouseclassicalstatisticaltestingistoconstructaconfidenceintervalusingthesamecriticalvalueaswasusedforatwo-sidedtest
A(1-a)%confidenceintervalisdefinedas
Economics20-Prof.Anderson
Computingp-valuesforttests
Analternativetotheclassicalapproachistoask,“whatisthesmallestsignificancelevelatwhichthenullwouldberejected?”
So,computethetstatistic,andthenlookupwhatpercentileitisintheappropriatetdistribution–thisisthep-value
p-valueistheprobabilitywewouldobservethetstatisticwedid,ifthenullweretrue
Economics20-Prof.Anderson
Stataandp-values,ttests,etc.
Mostcomputerpackageswillcomputethep-valueforyou,assumingatwo-sidedtest
Ifyoureallywantaone-sidedalternative,justdividethetwo-sidedp-valueby2
Stataprovidesthetstatistic,p-value,and95%confidenceintervalforH0:bj=0foryou,incolumnslabeled“t”,“P>|t|”and“[95%Conf.Interval]”,respectively
Economics20-Prof.Anderson
TestingaLinearCombination
Supposeinsteadoftestingwhetherb1isequaltoaconstant,youwanttotestifitisequaltoanotherparameter,thatisH0:b1=b2
Usesamebasicprocedureforformingatstatistic
Economics20-Prof.Anderson
TestingLinearCombo(cont)
Economics20-Prof.Anderson
TestingaLinearCombo(cont)
So,touseformula,needs12,whichstandardoutputdoesnothave
Manypackageswillhaveanoptiontogetit,orwilljustperformthetestforyou
InStata,afterregyx1x2…xkyouwouldtypetestx1=x2togetap-valueforthetest
Moregenerally,youcanalwaysrestatetheproblemtogetthetestyouwant
Economics20-Prof.Anderson
Example:
Supposeyouareinterestedintheeffectofcampaignexpendituresonoutcomes
ModelisvoteA=b0+b1log(expendA)+b2log(expendB)+b3prtystrA+u
H0:b1=-b2,orH0:q1=b1+b2=0
b1=q1–b2,sosubstituteinandrearrange??voteA=b0+q1log(expendA)+b2log(expendB-expendA)+b3prtystrA+u
Economics20-Prof.Anderson
Example(cont):
Thisisthesamemodelasoriginally,butnowyougetastandarderrorforb1–b2=q1directlyfromthebasicregression
Anylinearcombinationofparameterscouldbetestedinasimilarmanner
Otherexamplesofhypothesesaboutasinglelinearcombinationofparameters:
b1=1+b2;b1=5b2;b1=-1/2b2;etc
Economics20-Prof.Anderson
MultipleLinearRestrictions
Everythingwe’vedonesofarhasinvolvedtestingasinglelinearrestriction,(e.g.b1=0orb1=b2)
However,wemaywanttojointlytestmultiplehypothesesaboutourparameters
Atypicalexampleistesting“exclusionrestrictions”–wewanttoknowifagroupofparametersareallequaltozero
Economics20-Prof.Anderson
TestingExclusionRestrictions
NowthenullhypothesismightbesomethinglikeH0:bk-q+1=0,...,bk=0
ThealternativeisjustH1:H0isnottrue
Can’tjustcheckeachtstatisticseparately,becausewewanttoknowiftheqparametersarejointlysignificantatagivenlevel–itispossiblefornonetobeindividuallysignificantatthatlevel
Economics20-Prof.Anderson
ExclusionRestrictions(cont)
Todothetestweneedtoestimatethe“restrictedmodel”withoutxk-q+1,,…,xkincluded,aswellasthe“unrestrictedmodel”withallx’sincluded
Intuitively,wewanttoknowifthechangeinSSRisbigenoughtowarrantinclusionofxk-q+1,,…,xk
Economics20-Prof.Anderson
TheFstatistic
TheFstatisticisalwayspositive,sincetheSSRfromtherestrictedmodelcan’tbelessthantheSSRfromtheunrestricted
EssentiallytheFstatisticismeasuringtherelativeincreaseinSSRwhenmovingfromtheunrestrictedtorestrictedmodel
q=numberofrestrictions,ordfr–dfur
n–k–1=dfur
Economics20-Prof.Anderson
TheFstatistic(cont)
TodecideiftheincreaseinSSRwhenwemovetoarestrictedmodelis“bigenough”torejecttheexclusions,weneedtoknowaboutthesamplingdistributionofourFstat
Notsurprisingly,F~Fq,n-k-1,whereqisreferredtoasthenumeratordegreesoffreedomandn–k–1asthedenominatordegreesoffreedom
Economics20-Prof.Anderson
0
c
a
(1-a)
f(F)
F
TheFstatistic(cont)
reject
failtoreject
RejectH0ata
significancelevel
ifF>c
Economics20-Prof.Anderson
TheR2formoftheFstatistic
BecausetheSSR’smaybelargeandunwieldy,analternativeformoftheformulaisuseful
WeusethefactthatSSR=SST(1–R2)foranyregression,socansubstituteinforSSRuandSSRur
Economics20-Prof.Anderson
OverallSignificance
AspecialcaseofexclusionrestrictionsistotestH0:b1=b2=…=bk=0
SincetheR2fromamodelwithonlyaninterceptwillbezero,theFstatisticissimply
Economics20-Prof.Anderson
GeneralLinearRestrictions
ThebasicformoftheFstatisticwillworkforanysetoflinearrestrictions
Firstestimatetheunrestrictedmodelandthenestimatetherestrictedmodel
Ineachcase,makenoteoftheSSR
Imposingtherestrictionscanbetricky–willlikelyhavetoredefinevariablesagain
Economics20-Prof.Anderson
Example:
Usesamevotingmodelasbefore
ModelisvoteA=b0+b1log(expendA)+b2log(expendB)+b3prtystrA+u
nownullisH0:b1=1,b3=0
Substitutingintherestrictions:voteA=b0+log(expendA)+b2log(expendB)+u,so
UsevoteA-log(expendA)=b0+b2log(expendB)+uasrestrictedmodel
Economics20-Prof.Anderson
FStatisticSummary
Justaswithtstatistics,p-valuescanbecalculatedbylookingupthepercentileintheappropriateFdistribution
Statawilldothisbyentering:displayfprob(q,n–k–1,F),wheretheappropriatevaluesofF,q,andn–k–1areused
Ifonlyoneexclusionisbeingtested,thenF=t2,andthep-valueswillbethesame
Economics20-Prof.Anderson
MultipleRegressionAnalysis
y=b0+b1x1+b2x2+...bkxk+u
3.AsymptoticProperties
Economics20-Prof.Anderson
Consistency
UndertheGauss-MarkovassumptionsOLSisBLUE,butinothercasesitwon’talwaysbepossibletofindunbiasedestimators
Inthosecases,wemaysettleforestimatorsthatareconsistent,meaningasn??∞,thedistributionoftheestimatorcollapsestotheparametervalue
Economics20-Prof.Anderson
SamplingDistributionsasn??
b1
n1
n2
n3
n1<n2<n3
Economics20-Prof.Anderson
ConsistencyofOLS
UndertheGauss-Markovassumptions,theOLSestimatorisconsistent(andunbiased)
Consistencycanbeprovedforthesimpleregressioncaseinamannersimilartotheproofofunbiasedness
Willneedtotakeprobabilitylimit(plim)toestablishconsistency
Economics20-Prof.Anderson
ProvingConsistency
Economics20-Prof.Anderson
AWeakerAssumption
Forunbiasedness,weassumedazeroconditionalmean–E(u|x1,x2,…,xk)=0
Forconsistency,wecanhavetheweakerassumptionofzeromeanandzerocorrelation–E(u)=0andCov(xj,u)=0,forj=1,2,…,k
Withoutthisassumption,OLSwillbebiasedandinconsistent!
Economics20-Prof.Anderson
DerivingtheInconsistency
Justaswecouldderivetheomittedvariablebiasearlier,nowwewanttothinkabouttheinconsistency,orasymptoticbias,inthiscase
Economics20-Prof.Anderson
AsymptoticBias(cont)
So,thinkingaboutthedirectionoftheasymptoticbiasi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)指導(dǎo)專家管理辦法
- 留學(xué)服務(wù)協(xié)議書范本
- 昆明市二手房交易餐飲配套合同
- 園林綠化公司裝修粉刷施工合同
- 舞蹈服裝租賃合同自行清洗
- 現(xiàn)金流管理與法律法規(guī)變化
- 景觀設(shè)計招投標(biāo)操作指南
- 川省旅游行業(yè)事業(yè)單位聘用合同
- 2024年快遞版:快速貨物運輸代理協(xié)議
- 健康養(yǎng)生度假區(qū)民房建筑施工合同
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 2024年學(xué)校食堂管理工作計劃(六篇)
- 體育賽事組織服務(wù)協(xié)議
- 天車工競賽考核題
- 民辦非企業(yè)單位理事會制度
- 臨床輸血的護理課件
- 民生銀行在線測評真題
- 人教版(PEP)小學(xué)六年級英語上冊全冊教案
- 第二章 旅游線路類型及設(shè)計原則
- 大學(xué)美育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 臨時食堂施工方案
評論
0/150
提交評論