版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省銅仁市烏江學(xué)校2024屆高三數(shù)學(xué)試題第二學(xué)期數(shù)學(xué)試題周練(二)含附加題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.2.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.43.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=04.已知函數(shù),若有2個零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.5.已知集合,,,則()A. B. C. D.6.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.8.若的內(nèi)角滿足,則的值為()A. B. C. D.9.已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.10.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.11.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.912.函數(shù)的大致圖象為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.14.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計(jì)如圖所示,估算月經(jīng)濟(jì)損失的平均數(shù)為,中位數(shù)為n,則_________.15.函數(shù)的定義域?yàn)開_________.16.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(diǎn)(3,4),則該雙曲線的準(zhǔn)線方程為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.18.(12分)直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時,求直線的方程.19.(12分)已知橢圓:的四個頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請說明理由.20.(12分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費(fèi)用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設(shè)計(jì),可使得發(fā)酵館占地面積最小.21.(12分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿足,求二面角的余弦值.22.(10分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過作交于點(diǎn),連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點(diǎn)共線時,取“=”號,∴的最小值為.
故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.2、A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題3、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評:本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.4、C【解析】
令,可得,要使得有兩個實(shí)數(shù)解,即和有兩個交點(diǎn),結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實(shí)數(shù)解,即和有兩個交點(diǎn),,令,可得,當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減.當(dāng)時,,若直線和有兩個交點(diǎn),則.實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了根據(jù)零點(diǎn)求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點(diǎn)個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計(jì)算能力,屬于中檔題.5、D【解析】
根據(jù)集合的基本運(yùn)算即可求解.【詳解】解:,,,則故選:D.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.6、B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題7、C【解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).8、A【解析】
由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因?yàn)椋?故選:A.【點(diǎn)睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計(jì)算能力.9、A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.10、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當(dāng)直線過點(diǎn)時,目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過點(diǎn)時,目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.11、B【解析】
模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.12、A【解析】
利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時,最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.14、360【解析】
先計(jì)算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點(diǎn)睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域?yàn)?.故答案為:【點(diǎn)睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.16、【解析】
代入求解得,再求準(zhǔn)線方程即可.【詳解】解:雙曲線經(jīng)過點(diǎn),,解得,即.又,故該雙曲線的準(zhǔn)線方程為:.故答案為:.【點(diǎn)睛】本題主要考查了雙曲線的準(zhǔn)線方程求解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)先證明四邊形是菱形,進(jìn)而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.以O(shè)為坐標(biāo)原點(diǎn),以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進(jìn)而可求出二面角的正弦值.【詳解】(1)證明:因?yàn)辄c(diǎn)為的中點(diǎn),,所以,因?yàn)?所以,所以四邊形是平行四邊形,因?yàn)?所以平行四邊形是菱形,所以,因?yàn)槠矫嫫矫?且平面平面,所以平面.因?yàn)槠矫?所以平面平面.(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為坐標(biāo)原點(diǎn),以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系.因?yàn)榈酌鍭BCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設(shè)平面ABF的法向量為,則,不妨取,則,設(shè)平面DBF的法向量為,則,不妨取,則,故.記二面角的大小為,故.【點(diǎn)睛】本題考查了面面垂直的證明,考查了二面角的求法,利用空間向量求平面的法向量是解決空間角問題的常見方法,屬于中檔題.18、(1);(2)【解析】
(1)設(shè)出兩點(diǎn)的坐標(biāo),由距離之積為16,可得.利用向量的數(shù)量積坐標(biāo)運(yùn)算,將轉(zhuǎn)化為.再利用兩點(diǎn)均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設(shè)出直線l的方程,代入拋物線方程,由韋達(dá)定理發(fā)現(xiàn)直線l恒過定點(diǎn),將面積用參數(shù)t表示,求出其最值,并得出此時的直線方程.【詳解】解:(1)由題設(shè),因?yàn)?,到軸的距離的積為,所以,又因?yàn)?,,,所以拋物線的方程為.(2)因?yàn)橹本€與拋物線兩個公共點(diǎn),所以的斜率不為,所以設(shè)聯(lián)立,得,即,,即直線恒過定點(diǎn),所以,當(dāng)時,面積取得最小值,此時.【點(diǎn)睛】本題考查了拋物線的標(biāo)準(zhǔn)方程的求法,直線與拋物線相交的問題,其中垂直條件的轉(zhuǎn)化,直線過定點(diǎn)均為該題的關(guān)鍵,屬于綜合性較強(qiáng)的題.19、(1);(2)存在,且方程為或.【解析】
(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當(dāng)斜率不存在時,以為直徑的圓顯然不經(jīng)過橢圓的左頂點(diǎn),所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標(biāo)分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點(diǎn),則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn),直線的方程為或.【點(diǎn)睛】本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問題,弦長問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.20、(1)(2)當(dāng)時,,米時,發(fā)酵館的占地面積最?。划?dāng)時,時,發(fā)酵館的占地面積最??;當(dāng)時,米時,發(fā)酵館的占地面積最小.【解析】
(1)設(shè)米,總費(fèi)用為,解即可得解;(2)結(jié)合(1)可得占地面積結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設(shè)米,則米,由題意知:,得,設(shè)總費(fèi)用為,則,解得:,又,故,所以發(fā)酵池邊長的范圍是不小于15米,且不超過25米;(2)設(shè)發(fā)酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發(fā)酵館的占地面積最??;②時,,在上遞減,則,即米時,發(fā)酵館的占地面積最??;③時,時,,遞減;時,遞增,因此,即時,發(fā)酵館的占地面積最??;綜上所述:當(dāng)時,,米時,發(fā)酵館的占地面積最?。划?dāng)時,時,發(fā)酵館的占地面積最??;當(dāng)時,米時,發(fā)酵館的占地面積最小.【點(diǎn)睛】此題考查函數(shù)模型的應(yīng)用,關(guān)鍵在于根據(jù)題意恰當(dāng)?shù)亟⒛P?,利用函?shù)性質(zhì)討論最值取得的情況.21、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出各個點(diǎn)的坐標(biāo),并表示出,由空間向量數(shù)量積運(yùn)算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點(diǎn)在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運(yùn)算求得兩個平面夾角的余弦值,再根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子設(shè)備交易合同案例
- 悔過自責(zé)重建信任
- 珍愛和平和諧相處
- 香蕉采購合同示例
- 版企業(yè)借款合同模式
- 地毯招標(biāo)廢標(biāo)原因文件
- 建筑施工土方填筑招標(biāo)
- 戶外垃圾桶設(shè)計(jì)招標(biāo)
- 電子招投標(biāo)操作技巧
- 大樓租賃合同書
- GB/T 7714-2015信息與文獻(xiàn)參考文獻(xiàn)著錄規(guī)則
- GB/T 19963.1-2021風(fēng)電場接入電力系統(tǒng)技術(shù)規(guī)定第1部分:陸上風(fēng)電
- GB/T 13586-2006鋁及鋁合金廢料
- 鋼結(jié)構(gòu)設(shè)計(jì)計(jì)算書
- 人民法院應(yīng)急預(yù)案范文(通用5篇)
- 2023教師編制考試教育理論綜合基礎(chǔ)知識復(fù)習(xí)題庫及參考答案(通用版)
- 新概念英語第一冊Lesson13-14課件
- 2023年惠州市交通投資集團(tuán)有限公司招聘筆試模擬試題及答案解析
- 紅外線治療儀
- DB3302T 1124-2021 使用危險化學(xué)品工業(yè)企業(yè)安全生產(chǎn)基本規(guī)范
- 葡萄糖無氧氧化課件
評論
0/150
提交評論