小初高試卷模板_第1頁
小初高試卷模板_第2頁
小初高試卷模板_第3頁
小初高試卷模板_第4頁
小初高試卷模板_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第頁靈寶市2024-2025學年上期期中學情調(diào)研八年級數(shù)學試卷一、選擇題(每小題3分,共30分)1.下列各組線段能組成三角形的是()A.1,2,3 B.5,5,11 C.5,6,11 D.6,8,13【答案】D【解析】【分析】本題考查三角形三邊關(guān)系,在運用三角形三邊關(guān)系判定三條線段能否構(gòu)成三角形時,只要兩條較短的線段長度之和大于第三條線段的長度即可判定這三條線段能構(gòu)成一個三角形,由此即可判斷,關(guān)鍵是掌握三角形三邊關(guān)系定理.【詳解】解:A、,長度是1、2、3的線段不能組成三角形,故A不符合題意;B、,長度是5、5、11的線段不能組成三角形,故B不符合題意;C、,長度是5、6、11的線段不能組成三角形,故C不符合題意;D、,長度是6、8、13的線段能組成三角形,故D符合題意.故選:D.2.下列體育運動圖案中,屬于軸對稱圖形的是()A. B. C. D.【答案】C【解析】【分析】本題考查軸對稱圖形的定義,平面內(nèi),一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形叫軸對稱圖形.直線叫做圖形的對稱軸.【詳解】解:根據(jù)軸對稱圖形的定義可知:A選項:體育運動圖案不是軸對稱圖形,不符合題意,B選項:體育運動圖案不是軸對稱圖形,不符合題意,C選項:體育運動圖案是軸對稱圖形,符合題意,D選項:體育運動圖案不是軸對稱圖形,不符合題意,故選:C.3.下列各圖中,作邊邊上的高,正確的是()A B.C. D.【答案】D【解析】【分析】本題考查的是三角形的高的概念,從三角形的一個頂點向?qū)呑鞔咕€,垂足與頂點之間的線段叫做三角形的高,據(jù)此求解即可.【詳解】解:由三角形的高的概念可知,四個選項中只有D選項中的作圖方法是作的邊邊上的高,故選:D.4.已知是等邊三角形的高,且,那么的長是()A. B. C. D.【答案】B【解析】【分析】本題主要考查等邊三角形“三線合一”的性質(zhì),理解等邊三角形的性質(zhì)是解題關(guān)鍵.根據(jù)題意作出圖形,然后利用等邊三角形的性質(zhì)求解即可.【詳解】解:如圖所示:∵是等邊三角形,是等邊三角形的高,,∴,故選:B.5.如圖,點在同一條直線上,與相交于點,,下列結(jié)論不正確的是()A B. C. D.【答案】C【解析】【分析】直接根據(jù)全等三角形的性質(zhì)進行逐項分析即可得到答案.【詳解】解:A.,,故A選項正確,不符合題意;B.,,,故B選項正確,不符合題意;C.由不能得出,故C選項錯誤,符合題意;D.,,,即,故D選項正確,不符合題意;故選:C.【點睛】本題主要考查了三角形全等的性質(zhì),全等三角形的對應(yīng)角相等、對應(yīng)邊相等、對應(yīng)邊上的高對應(yīng)相等、對應(yīng)角的角平分線相等、對應(yīng)邊上的中線相等,全等三角形面積和周長相等,熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.6.小明同學用一根鐵絲恰好圍成一個等腰三角形,若其中兩條邊的長分別為和,則這根鐵絲的長為().A.14 B.16 C.18 D.20【答案】D【解析】【分析】本題考查了等腰三角形的性質(zhì)及三角形三邊關(guān)系,當腰為時和當腰為時,利用三角形的三邊關(guān)系判斷等腰三角形的三邊長,再根據(jù)等腰三角形的性質(zhì)即可求解,熟練掌握基礎(chǔ)知識,利用分類討論思想解決問題是解題的關(guān)鍵.【詳解】解:當腰為時,則等腰三角形的三邊分別為:、、,,、、不能構(gòu)成三角形,當腰為時,則等腰三角形的三邊分別為:、、,,、、能構(gòu)成三角形,這根鐵絲的長為:,故選:D.7.如圖,在中,,點D在邊上,將沿折疊,使點B恰好落在邊上的點E處.若,則的度數(shù)為()A. B. C. D.【答案】C【解析】【分析】本題考查三角形內(nèi)角和定理以及折疊的性質(zhì),掌握三角形的外角性質(zhì)是解題的關(guān)鍵.由折疊的性質(zhì)可求得,,在中,利用外角可求得,則可求得答案.【詳解】解:由折疊可得,,∵,∴,∵,∴,∴,故選:C.8.如圖,將一塊直角三角板DEF放置在銳角△ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過點B、C,若∠A=50°,則∠ABD+∠ACD的值為()A.60° B.50° C.40° D.30°【答案】C【解析】【詳解】∵∠A=50,∴∠ABC+∠ACB=180°-50°=130°.∵∠D=90,∴∠DBC+∠DCB=180°-90°=90°.∴∠ABD+∠ACD=(∠ABC+∠ACB)-(∠DBC+∠DCB)=130°-90°=40°.故選C.9.如圖,在中,點D在邊上,連接,且,直線是邊的垂直平分線.若點M在直線上運動,連接,則周長的最小值為()A.8 B.16 C.18 D.20【答案】C【解析】【分析】本題主要考查了線段垂直平分線的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握線段垂直平分線的性質(zhì).根據(jù)線段垂直平分線的性質(zhì)可得,則的周長,即可得到當A、M、D三點共線時,的值最小,此時,由此即可得到答案.【詳解】解:如圖所示,連接,∵是的垂直平分線,M在上運動,∴,∴的周長,∴要想的周長最小,即的值最小,∴當A、M、D三點共線時,的值最小,此時,∴此時的周長,∴的周長最小值為18,故選:C.10.如圖,在中,,的外角平分線與內(nèi)角平分線的延長線交于點,過點作交的延長線于點,連接,為中點,下列結(jié)論:①;②;③;④.其中正確的是().A.①②③ B.②③④ C.①③④ D.①②④【答案】B【解析】【分析】本題考查了全等三角形的判定和性質(zhì),等角的余角相等,角平分線上的點到角兩邊的距離相等,直角三角形的兩個銳角互余,三角形的三邊關(guān)系等知識.由,,得,可判斷①正確;由點為中點,得,根據(jù)三角形任意兩邊的和大于第三邊,得,則,可判斷②錯誤;作于點,可證明,得,再根據(jù)角平分線上的點到角兩邊的距離相等證明,則,可判斷③正確;由,,,證明,則,由,得,則,可判斷④正確,于是得到問題的答案.【詳解】解:的外角平分線與內(nèi)角平分線的延長線交于點,,,,,,故②正確;點為中點,,,,故①錯誤;作于點,則,在和中,,,,平分,,,,,故③正確;,,,在和中,,,,,,,故④正確,故選:B.二、填空題(每小題3分,共15分)11.如圖,某人將一塊三角形玻璃打碎成三塊,帶第___塊(填序號)能到玻璃店配一塊完全一樣的玻璃,用到的數(shù)學道理是____.【答案】①.③②.ASA【解析】【分析】已知三角形破損部分的邊角,得到原來三角形的邊角,根據(jù)三角形全等的判定方法,即可求解.【詳解】解:第①塊和第②塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊不能配一塊與原來完全一樣的;第③塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.應(yīng)帶③去.故答案為:③,ASA.【點睛】此題主要考查學生對全等三角形的判定方法的靈活運用,要求對常用的幾種方法熟練掌握.12.已知,在中,,則是_______三角形.【答案】直角【解析】【分析】主要考查了三角形的內(nèi)角和定理,根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:根據(jù)三角形內(nèi)角和定理知,,∴,,故是直角三角形故答案為:直角.13.如圖,在中,,是高,,,則__________.【答案】4【解析】【分析】先證明,再根據(jù)直角三角形的性質(zhì),即可求解.【詳解】解:∵,是高,∴,∴,∴,∴.故答案為:4.【點睛】本題主要考查了直角三角形的性質(zhì),熟練掌握直角三角形中,30度角所對的直角邊等于斜邊的一半是解題的關(guān)鍵.14.如圖,在中,為中線,和分別為和的一條高.若,,,則__________.【答案】2【解析】【分析】由題意,△ABC中,AD為中線,可知△ABD和△ADC的面積相等;利用面積相等,問題可求.【詳解】解:∵△ABC中,AD為中線,∴BD=DC,∴S△ABD=S△ADC,∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,∴?AB?ED=?AC?DF,∴×3×ED=×4×1.5,∴ED=2,故答案為:2.【點睛】此題考查三角形的中線,三角形的中線把三角形的面積分成相等的兩部分.本題的解答充分利用了面積相等這個點.15.在平面直角坐標系中,點,點,點,點C在x軸上.若,則點C的坐標為___________.【答案】或【解析】【分析】根據(jù)對稱,性質(zhì)即可,本題考查了對稱計算,熟練掌握計算方法是解題的關(guān)鍵.【詳解】∵點,點,∴點B關(guān)于直線的對稱點為,連接,則,∵點,點,∴點A、D關(guān)于y軸對稱,∴點B、點E關(guān)于y軸的對稱點為或,∴點C為或時,.故答案:或.三、解答下列各題(本大題共8道題,共75分)16.一個多邊形的內(nèi)角和比外角和的3倍少,求(1)這個多邊形的邊數(shù);(2)該多邊形共有多少條對角線.【答案】(1)七邊型(2)14【解析】【分析】本題主要考查的是多邊形的內(nèi)角與外角、多邊形的對角線,掌握相關(guān)知識是解題的關(guān)鍵.(1)任意多邊形的外角和均為,然后依據(jù)多邊形的內(nèi)角和公式列方程求解即可;(2)多邊形的對角線公式為:,據(jù)此解答即可.【小問1詳解】解:設(shè)這個多邊形的邊數(shù)為n,根據(jù)題意得:,解得:;所以,該多邊形為七邊形;【小問2詳解】解:,所以,七邊形共有14條對角線.17.如圖,,,,求證:.【答案】見解析【解析】【分析】本題考查等腰三角形的判定與性質(zhì),等角的余角相等.由可得,由可得,又,根據(jù)等角的余角相等即可得到,從而.【詳解】∵,∴,∵,∴,∴∵,∴,∴.18.如圖所示,已知,,,交于點,連接.試說明:.【答案】見解析【解析】【分析】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵證明,則.證明,可得.【詳解】解:和中,∵,∴,∴.在和中,∵,∴,∴.19.如圖,在四邊形中,,,,(1)求證:≌;(2)若,,求的度數(shù).【答案】(1)見解析(2)【解析】【分析】本題考查的知識點是全等三角形的判定定理以及平行線的性質(zhì),掌握以上知識點是解此題的關(guān)鍵.(1)通過,可得出,再利用全等三角形的判定定理即可證明結(jié)論;(2)根據(jù)已知條件以及三角形內(nèi)角和定理可求出,即可得出答案.【小問1詳解】解:∵,∴.又,,≌【小問2詳解】≌,∴∵∴20.如圖,在正方形網(wǎng)格上有一個.(1)畫關(guān)于直線的對稱圖形(不寫畫法);(2)若網(wǎng)格上的每個小正方形的邊長為1,求的面積.(3)在直線上求作一點P,使最?。敬鸢浮浚?)見解析(2)(3)見解析【解析】【分析】本題考查了作圖—軸對稱變化、軸對稱-最短路線問題,熟練掌握軸對稱的性質(zhì)是解決本題的關(guān)鍵.(1)先找出點、點、點關(guān)于直線的對稱點,再依次連接對稱點即可.(2)先求出所在的長方形的面積,再求出長方形里其他三個直角三角形的面積,用長方形的面積減去三個直角三角形的面積即可.(3)先找出點關(guān)于直線的對稱點,連接與直線相交于點,即的最小值就是線段的長度.【小問1詳解】解:如圖,即為所求;【小問2詳解】解:的面積.【小問3詳解】解:如圖,點P即所求.,故最小為.21.如圖,在的網(wǎng)格中有格點三角形,請在下面的圖中畫出與它成軸對稱的格點三角形,至少畫出四個不同的方案,并畫出對稱軸.【答案】見解析【解析】【分析】本題考查利用軸對稱設(shè)計圖案,解題關(guān)鍵是正確掌握軸對稱圖形的性質(zhì).直接利用軸對稱圖形的性質(zhì)分別得出符合題意的答案.【詳解】解:如圖,.22.在平面直角坐標系中,已知,,.(1)如圖1,若點,,求點的坐標;(2)如圖2,若點,,求點的坐標.【答案】(1)(2)【解析】【分析】(1)如圖,過點B作軸于D,根據(jù)點A、點C坐標可得、的長,根據(jù)同角的余角相等可得,利用可證明,根據(jù)全等三角形的性質(zhì)可得,,即可求出的長,進而可得答案.(2)過點C作平行于x軸的直線DE,過A作于D,過B作于E,由可得,則,,進而可求B點坐標.【小問1詳解】解:如圖,過點B作軸于D,∵A0,3∴,,∵,∴,∵,∴,在和中,,∴,∴,,∴,∴點B坐標為.【小問2詳解】解:過點C作平行于x軸的直線DE,過A作于D,過B作于E,∵,,,軸∴,,∵,,∴,∵,,∴,在和中,∵,∴,∴,,又∵,∴.【點睛】本題考查坐標與圖形、三角形內(nèi)角和定理及全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定定理是解題關(guān)鍵.23.某校八年級(1)班數(shù)學興趣小組在一次活動中進行了試驗探究活動,請你和他們一起活動吧.【探究與發(fā)現(xiàn)】(1)如圖1,是的中線,延長至點,使,連接,求證:.【理解與運用】(2)如圖2,是的中線,若,求的取值范圍;(3)如圖3,是的中線,,點在的延長線上,,求證:.【答案】(1)證明見解析;(2);(3)證明見解析【解析】【分析】本題考查全等三角形的判定與性質(zhì),涉及中點性質(zhì)、三角形三邊關(guān)系等知識,熟練掌握三角形全等的判定與性質(zhì)是解決問題的關(guān)鍵.(1)延長至點,使,連接,如圖所示,根據(jù)題意,由三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論