內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.2.在中,在邊上滿足,為的中點,則().A. B. C. D.3.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣24.函數(shù)的對稱軸不可能為()A. B. C. D.5.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.6.設(shè)不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.7.設(shè)命題:,,則為A., B.,C., D.,8.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.9.設(shè)雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.10.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.211.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.12.已知,,,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數(shù)為______用數(shù)字作答14.已知函數(shù),則曲線在點處的切線方程是_______.15.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.16.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.18.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.19.(12分)設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則的模為______.20.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.21.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學(xué)期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)22.(10分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.2、B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點睛】本題考查平面向量的線性運算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.3、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復(fù)數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.4、D【解析】

由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.5、D【解析】

設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因為實數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識的理解掌握水平.6、B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對應(yīng)的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎(chǔ)題.7、D【解析】

直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.8、A【解析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.9、C【解析】

求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.10、D【解析】

如圖所示建立直角坐標系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設(shè),則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關(guān)鍵.11、D【解析】

如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.12、B【解析】,選B二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.14、【解析】

求導(dǎo),x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導(dǎo)法則及運算,考查直線方程,考查計算能力,是基礎(chǔ)題15、【解析】

由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.16、【解析】

求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【解析】

(1)求出導(dǎo)函數(shù),并且解出它的零點x=,再分區(qū)間討論導(dǎo)數(shù)的正負,即可得到函數(shù)f(x)的單調(diào)區(qū)間;

(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域

為.

因為,令,可得;

當時,;當時,,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當,即時,函數(shù)在區(qū)間上是減函數(shù),

的最小值是當,即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當,即時,函數(shù)在上是增函數(shù),在上是減函數(shù).

又,

當時,的最小值是;

當時,的最小值為綜上所述,結(jié)論為當時,函數(shù)的最小值是;

當時,函數(shù)的最小值是.【點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小18、(1)證明見解析;(2).【解析】

(1)取BC的中點O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標系,如圖所示,則,,,設(shè)平面的一個法向量為,則,令,則,又平面的一個法向量為,所以二面角的余弦值為,即二面角的余弦值為.【點睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識點有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.19、1【解析】

整理已知利用復(fù)數(shù)的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1【點睛】本題考查復(fù)數(shù)的除法運算與求模,屬于基礎(chǔ)題.20、(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結(jié)合基本不等式求出的取值范圍,再結(jié)合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應(yīng)用,考查計算能力,屬于中等題.21、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】

(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經(jīng)計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論