2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高考數(shù)學(xué)押題試卷含解析_第1頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高考數(shù)學(xué)押題試卷含解析_第2頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高考數(shù)學(xué)押題試卷含解析_第3頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高考數(shù)學(xué)押題試卷含解析_第4頁
2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆河南省創(chuàng)新發(fā)展聯(lián)盟高考數(shù)學(xué)押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中內(nèi)角所對應(yīng)的邊依次為,若,則的面積為()A. B. C. D.2.三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.3.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)4.設(shè),且,則()A. B. C. D.5.若的內(nèi)角滿足,則的值為()A. B. C. D.6.在平面直角坐標(biāo)系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.7.函數(shù)的大致圖象為()A. B.C. D.8.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.29.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.10.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.11.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設(shè),則的取值范圍是()A. B. C. D.12.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).14.已知為橢圓內(nèi)一定點,經(jīng)過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.15.定義在上的奇函數(shù)滿足,并且當(dāng)時,則___16.根據(jù)如圖的算法,輸出的結(jié)果是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.18.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.19.(12分)已知,均為正項數(shù)列,其前項和分別為,,且,,,當(dāng),時,,.(1)求數(shù)列,的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.21.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.22.(10分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由余弦定理可得,結(jié)合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計算能力,是一道容易題.2、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.3、D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個選項即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復(fù)數(shù)的模長、實部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.4、C【解析】

將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡單題目.5、A【解析】

由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.6、D【解析】

設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標(biāo)表達(dá)式有:又∵∴故選:D【點睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點法;④參數(shù)法;⑤待定系數(shù)法7、A【解析】

利用特殊點的坐標(biāo)代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.8、B【解析】

對復(fù)數(shù)進(jìn)行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復(fù)數(shù)的計算,虛部的概念,屬于簡單題.9、A【解析】

由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對這些知識的理解掌握水平.10、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項

故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.11、C【解析】

以為坐標(biāo)原點,以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運算計算即可解決.【詳解】以為坐標(biāo)原點建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長為1,則,,設(shè),則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標(biāo)運算求變量的取值范圍,考查學(xué)生的基本計算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.12、B【解析】

求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、135【解析】

根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學(xué)生的計算能力和應(yīng)用能力.14、【解析】

設(shè)弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進(jìn)而可求得直線的點斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達(dá)定理設(shè)而不求法來解答,考查計算能力,屬于中等題.15、【解析】

根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對稱軸及周期性,進(jìn)而由的解析式求得的值.【詳解】滿足,由函數(shù)對稱性可知關(guān)于對稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時,所以,所以,故答案為:.【點睛】本題考查了函數(shù)奇偶性與對稱性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.16、55【解析】

根據(jù)該For語句的功能,可得,可得結(jié)果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.18、(1)(2)【解析】

(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當(dāng)且僅當(dāng)時,取等號).由(1)得(當(dāng)且僅當(dāng)時,取等號),解得.所以(當(dāng)且僅當(dāng)時,取等號),所以的周長的最小值為.19、(1),(2)【解析】

(1),所,兩式相減,即可得到數(shù)列遞推關(guān)系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數(shù)列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當(dāng)時,,解得,所以數(shù)列是首項和公比均為的等比數(shù)列,即,因為,整理得,又因為,所以,所以,即,因為,所以數(shù)列是以首項和公差均為1的等差數(shù)列,所以;(2)由(1)可知,,,即.【點睛】此題考查求數(shù)列的通項公式,以及數(shù)列求和,關(guān)鍵在于對題中所給關(guān)系合理變形,發(fā)現(xiàn)其中的關(guān)系,裂項求和作為一類常用的求和方法,需要在平常的學(xué)習(xí)中多做積累常見的裂項方式.20、(1)(2)【解析】

(1)代入計算即可.(2)設(shè)直線AB的方程為,再聯(lián)立直線與拋物線的方程,消去可得的一元二次方程,再根據(jù)韋達(dá)定理與求解,進(jìn)而利用弦長公式求解即可.【詳解】解:(1)因為拋物線過點,所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設(shè)直線AB的方程為,,.因為,所以,聯(lián)立,化簡得,所以,,所以,,解得,所以.【點睛】本題考查拋物線的方程以及聯(lián)立直線與拋物線求弦長的簡單應(yīng)用.屬于基礎(chǔ)題.21、(1)(2)證明見解析【解析】

(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時,;當(dāng)時,;當(dāng)時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導(dǎo)數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論