河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題_第1頁
河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題_第2頁
河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題_第3頁
河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題_第4頁
河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題.doc 免費下載

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省遵化市堡子店中學(xué)2023-2024學(xué)年高三下學(xué)期第一次質(zhì)量調(diào)研數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在的圖像大致為A. B. C. D.2.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.3.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.4.已知函數(shù),,則的極大值點為()A. B. C. D.5.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.6.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里7.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.8.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.9.設(shè)雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.610.三棱柱中,底面邊長和側(cè)棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.11.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.12.已知,則的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)與的圖象上存在關(guān)于軸的對稱點,則實數(shù)的取值范圍為______.14.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.15.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.16.若,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.18.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.19.(12分)誠信是立身之本,道德之基,我校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進(jìn)行調(diào)研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學(xué)生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.20.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),為數(shù)列的前項和,記,證明:.21.(12分)在直角坐標(biāo)系中,點的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相交于兩點,若,求的值.22.(10分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.【點睛】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識、基本計算能力的考查.2、A【解析】

根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.3、D【解析】

按照復(fù)數(shù)的運算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點睛】本題考查復(fù)數(shù)的四則運算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運算能力,屬于基礎(chǔ)題.4、A【解析】

求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點為.故選:A.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點,屬基礎(chǔ)題.5、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.6、C【解析】

設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.7、B【解析】

連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設(shè)直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.9、A【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點、右焦點的坐標(biāo),再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點的坐標(biāo)為,右焦點的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設(shè)點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運算能力.10、B【解析】

設(shè),,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉(zhuǎn)化為向量夾角的求解問題.11、B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.12、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求得與關(guān)于軸對稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點,即方程有解.對分成三種情況進(jìn)行分類討論,由此求得實數(shù)的取值范圍.【詳解】因為關(guān)于軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關(guān)于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉(zhuǎn)化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設(shè),相切時,切點的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時,,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關(guān)于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【點睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識.14、56【解析】

根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.15、【解析】

利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.16、【解析】

因為,所以,又,所以,則,所以.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解析】

(1)根據(jù)散點圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當(dāng)且僅當(dāng)時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.【點睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.18、(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點,建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.19、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【解析】

(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.(Ⅲ)兩次活動效果均好.理由:活動舉辦后,“水站誠信度'由和看出,后繼一周都有提升.【點睛】本題考查平均數(shù)公式和古典概型概率計算公式;考查運算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關(guān)鍵;屬于中檔題、??碱}型.20、(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項相消法求和并證明不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論