甘肅省臨夏市2025屆高考考前模擬數(shù)學試題含解析_第1頁
甘肅省臨夏市2025屆高考考前模擬數(shù)學試題含解析_第2頁
甘肅省臨夏市2025屆高考考前模擬數(shù)學試題含解析_第3頁
甘肅省臨夏市2025屆高考考前模擬數(shù)學試題含解析_第4頁
甘肅省臨夏市2025屆高考考前模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省臨夏市2025屆高考考前模擬數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大2.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件3.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關系,它在復變函數(shù)論里非常重要,被譽為“數(shù)學中的天橋”.根據(jù)歐拉公式可知,表示的復數(shù)位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是()A.3 B.4 C.5 D.65.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.6.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.7.設為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.8.一只螞蟻在邊長為的正三角形區(qū)域內隨機爬行,則在離三個頂點距離都大于的區(qū)域內的概率為()A. B. C. D.9.設數(shù)列的各項均為正數(shù),前項和為,,且,則()A.128 B.65 C.64 D.6310.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數(shù)條直線與平行 B.且C.且 D.內的任何直線都與平行11.已知關于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.12.如圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.14.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.15.若函數(shù),則的值為______.16.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,不等式恒成立,求整數(shù)的最小值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.19.(12分)設數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設cn=bnan,求數(shù)列20.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.21.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.22.(10分)已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

,,判斷其在內的單調性即可.【詳解】解:根據(jù)題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.2、A【解析】

畫出“,,,所表示的平面區(qū)域,即可進行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.3、A【解析】

計算,得到答案.【詳解】根據(jù)題意,故,表示的復數(shù)在第一象限.故選:.【點睛】本題考查了復數(shù)的計算,意在考查學生的計算能力和理解能力.4、B【解析】

通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.5、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨??;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.6、C【解析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質,還考查了運算求解的能力,屬于中檔題.7、C【解析】

根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎題.8、A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.9、D【解析】

根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數(shù)列是等比數(shù)列,又因為,所以,.故選:D【點睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項和公式,還考查了運算求解的能力,屬于中檔題.10、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.11、C【解析】

先利用三角恒等變換將題中的方程化簡,構造新的函數(shù),將方程的解的問題轉化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結合法,求得范圍.屬于中檔題.12、D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數(shù)的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據(jù)古典概型求概率,關鍵在于根據(jù)題意準確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).14、【解析】

將已知由前n項和定義整理為,再由等比數(shù)列性質求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.15、【解析】

根據(jù)題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質、對數(shù)運算法則的應用,考查函數(shù)與方程思想、轉化與化歸思想,考查運算求解能力.16、1【解析】

由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點睛】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】

(1)將直接代入,對求導得,由于函數(shù)單調性不好判斷,故而構造函數(shù),繼續(xù)求導,判斷導函數(shù)在左右兩邊的正負情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內為減函數(shù),且∴當時,;當時,.∴在內是增函數(shù),在內是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內單調遞增,在內單調遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學生利用導數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學生要求較高,然后需要學生能構造新函數(shù)處理恒成立問題,為難題18、(1);(2)見解析【解析】

(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當且僅當,即時取等號,,當且僅當即時取等號,.【點睛】本題考查分類討論解絕對值不等式,考查三角不等式的應用及基本不等式的應用,是一道中檔題.19、(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數(shù)列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關系an=Sn-20、(1);(2).【解析】

(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解.【詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題.21、(1)證明見解析(2)【解析】

(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關系,得出和,由于底面,利用線面垂直的性質,得出,且,最后結合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以可設平面平面,又因為平面,所以.因為平面,平面,所以,從而得.因為底面,所以.因為,所以.因為,所以平面.綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,則,,,,所以,,,.設是平面的法向量,由取取,得.設是平面的法向量,由得取,得,所以,即的余弦值為.【點睛】本題考查線面垂直的判定和空間二面角的計算,還運用線面平行的性質、線面垂直的判定定理、點線面的位置關系、空間向量的坐標運算等,同時考查學生的空間想象

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論