版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第07講函數(shù)與方程一、函數(shù)的零點(diǎn)對(duì)于函數(shù)SKIPIF1<0,我們把使SKIPIF1<0的實(shí)數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點(diǎn).二、方程的根與函數(shù)零點(diǎn)的關(guān)系方程SKIPIF1<0有實(shí)數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0的圖像與SKIPIF1<0軸有公共點(diǎn)SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn).三、零點(diǎn)存在性定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖像是連續(xù)不斷的一條曲線,并且有SKIPIF1<0,那么函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),即存在SKIPIF1<0,使得SKIPIF1<0也就是方程SKIPIF1<0的根.四、二分法對(duì)于區(qū)間SKIPIF1<0上連續(xù)不斷且SKIPIF1<0的函數(shù)SKIPIF1<0,通過不斷地把函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法.求方程SKIPIF1<0的近似解就是求函數(shù)SKIPIF1<0零點(diǎn)的近似值.五、用二分法求函數(shù)SKIPIF1<0零點(diǎn)近似值的步驟(1)確定區(qū)間SKIPIF1<0,驗(yàn)證SKIPIF1<0,給定精度SKIPIF1<0.(2)求區(qū)間SKIPIF1<0的中點(diǎn)SKIPIF1<0.(3)計(jì)算SKIPIF1<0.若SKIPIF1<0則SKIPIF1<0就是函數(shù)SKIPIF1<0的零點(diǎn);若SKIPIF1<0,則令SKIPIF1<0(此時(shí)零點(diǎn)SKIPIF1<0).若SKIPIF1<0,則令SKIPIF1<0(此時(shí)零點(diǎn)SKIPIF1<0)(4)判斷是否達(dá)到精確度SKIPIF1<0,即若SKIPIF1<0,則函數(shù)零點(diǎn)的近似值為SKIPIF1<0(或SKIPIF1<0);否則重復(fù)第(2)—(4)步.用二分法求方程近似解的計(jì)算量較大,因此往往借助計(jì)算完成.【解題方法總結(jié)】函數(shù)的零點(diǎn)相關(guān)技巧:①若連續(xù)不斷的函數(shù)SKIPIF1<0在定義域上是單調(diào)函數(shù),則SKIPIF1<0至多有一個(gè)零點(diǎn).②連續(xù)不斷的函數(shù)SKIPIF1<0,其相鄰的兩個(gè)零點(diǎn)之間的所有函數(shù)值同號(hào).③連續(xù)不斷的函數(shù)SKIPIF1<0通過零點(diǎn)時(shí),函數(shù)值不一定變號(hào).④連續(xù)不斷的函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0上有零點(diǎn),不一定能推出SKIPIF1<0.【典例例題】題型一:求函數(shù)的零點(diǎn)或零點(diǎn)所在區(qū)間【例1】(2023·廣西玉林·博白縣中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0是奇函數(shù),且SKIPIF1<0,若SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)零點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.2 D.4【對(duì)點(diǎn)訓(xùn)練1】(2023·吉林·通化市第一中學(xué)校校聯(lián)考模擬預(yù)測)已知SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)零點(diǎn),則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練2】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的零點(diǎn)依次為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練3】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,若SKIPIF1<0是方程SKIPIF1<0的一個(gè)解,則SKIPIF1<0可能存在的區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解題總結(jié)】求函數(shù)SKIPIF1<0零點(diǎn)的方法:(1)代數(shù)法,即求方程SKIPIF1<0的實(shí)根,適合于宜因式分解的多項(xiàng)式;(2)幾何法,即利用函數(shù)SKIPIF1<0的圖像和性質(zhì)找出零點(diǎn),適合于宜作圖的基本初等函數(shù).題型二:利用函數(shù)的零點(diǎn)確定參數(shù)的取值范圍【例2】(2023·山西陽泉·統(tǒng)考三模)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn).則實(shí)數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練4】(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練5】(2023·河北·高三學(xué)業(yè)考試)已知函數(shù)SKIPIF1<0是R上的奇函數(shù),若函數(shù)SKIPIF1<0的零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練6】(2023·浙江紹興·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上有零點(diǎn),則SKIPIF1<0的最大值為__________.【對(duì)點(diǎn)訓(xùn)練7】(2023·上海浦東新·高三上海市進(jìn)才中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍___________.【解題總結(jié)】本類問題應(yīng)細(xì)致觀察、分析圖像,利用函數(shù)的零點(diǎn)及其他相關(guān)性質(zhì),建立參數(shù)關(guān)系,列關(guān)于參數(shù)的不等式,解不等式,從而獲解.題型三:方程根的個(gè)數(shù)與函數(shù)零點(diǎn)的存在性問題【例3】(2023·黑龍江哈爾濱·哈爾濱三中校考模擬預(yù)測)已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0________.【對(duì)點(diǎn)訓(xùn)練8】(2023·新疆·校聯(lián)考二模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0存在唯一的零點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是________.【對(duì)點(diǎn)訓(xùn)練9】(2023·天津?yàn)I海新·統(tǒng)考三模)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有三個(gè)不同的零點(diǎn),則SKIPIF1<0的取值范圍是________.【對(duì)點(diǎn)訓(xùn)練10】(2023·江蘇·校聯(lián)考模擬預(yù)測)若曲線SKIPIF1<0有兩條過SKIPIF1<0的切線,則a的范圍是______.【對(duì)點(diǎn)訓(xùn)練11】(2023·天津北辰·統(tǒng)考三模)設(shè)SKIPIF1<0,對(duì)任意實(shí)數(shù)x,記SKIPIF1<0.若SKIPIF1<0有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.【對(duì)點(diǎn)訓(xùn)練12】(2023·廣東·統(tǒng)考模擬預(yù)測)已知實(shí)數(shù)m,n滿足SKIPIF1<0,則SKIPIF1<0___________.【解題總結(jié)】方程的根或函數(shù)零點(diǎn)的存在性問題,可以依據(jù)區(qū)間端點(diǎn)處函數(shù)值的正負(fù)來確定,但是要確定函數(shù)零點(diǎn)的個(gè)數(shù)還需要進(jìn)一步研究函數(shù)在這個(gè)區(qū)間的單調(diào)性,若在給定區(qū)間上是單調(diào)的,則至多有一個(gè)零點(diǎn);如果不是單調(diào)的,可繼續(xù)分出小的區(qū)間,再類似做出判斷.題型四:嵌套函數(shù)的零點(diǎn)問題【例4】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有且只有三個(gè)不同的實(shí)數(shù)解,則正實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練13】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則關(guān)于SKIPIF1<0的方程SKIPIF1<0有SKIPIF1<0個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)SKIPIF1<0滿足(
)A.SKIPIF1<0且SKIPIF1<0 B.SKIPIF1<0且SKIPIF1<0C.SKIPIF1<0且SKIPIF1<0 D.SKIPIF1<0且SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練14】(2023·四川資陽·高三統(tǒng)考期末)定義在R上函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,且SKIPIF1<0則關(guān)于x的方程SKIPIF1<0(SKIPIF1<0)有n個(gè)不同的實(shí)數(shù)解,則n的所有可能的值為A.2 B.4C.2或4 D.2或4或6【對(duì)點(diǎn)訓(xùn)練15】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,設(shè)關(guān)于SKIPIF1<0的方程SKIPIF1<0有SKIPIF1<0個(gè)不同的實(shí)數(shù)解,則SKIPIF1<0的所有可能的值為A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【解題總結(jié)】2、二次函數(shù)作為外函數(shù)可以通過參變分離減少運(yùn)算,但是前提就是函數(shù)的基本功要扎實(shí).題型五:函數(shù)的對(duì)稱問題【例5】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象上存在點(diǎn)P,函數(shù)g(x)=ax-3的圖象上存在點(diǎn)Q,且P,Q關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練16】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,若SKIPIF1<0無零點(diǎn),則實(shí)數(shù)k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練17】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象上存在點(diǎn)SKIPIF1<0,函數(shù)SKIPIF1<0的圖象上存在點(diǎn)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練18】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù))與SKIPIF1<0的圖象上存在關(guān)于SKIPIF1<0軸對(duì)稱的點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解題總結(jié)】題型六:函數(shù)的零點(diǎn)問題之分段分析法模型【例6】(2023·浙江寧波·高三統(tǒng)考期末)若函數(shù)SKIPIF1<0至少存在一個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練19】(2023·湖北·高三校聯(lián)考期中)設(shè)函數(shù)SKIPIF1<0,記SKIPIF1<0,若函數(shù)SKIPIF1<0至少存在一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練20】(2023·福建廈門·廈門外國語學(xué)校??家荒#┤糁辽俅嬖谝粋€(gè)SKIPIF1<0,使得方程SKIPIF1<0成立.則實(shí)數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練21】(2023·湖南長沙·高三長沙一中校考階段練習(xí))設(shè)函數(shù)SKIPIF1<0(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù)),若函數(shù)SKIPIF1<0至少存在一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解題總結(jié)】分類討論數(shù)學(xué)思想方法題型七:唯一零點(diǎn)求值問題【例7】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則實(shí)數(shù)SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練22】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練23】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0分別是定義在SKIPIF1<0上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,若函數(shù)SKIPIF1<0有唯一零點(diǎn),則實(shí)數(shù)SKIPIF1<0的值為A.SKIPIF1<0或SKIPIF1<0 B.1或SKIPIF1<0 C.SKIPIF1<0或2 D.SKIPIF1<0或1【對(duì)點(diǎn)訓(xùn)練24】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則負(fù)實(shí)數(shù)SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【解題總結(jié)】利用函數(shù)零點(diǎn)的情況求參數(shù)的值或取值范圍的方法:(1)利用零點(diǎn)存在性定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩個(gè)熟悉的函數(shù)圖像的上、下關(guān)系問題,從而構(gòu)建不等式求解.題型八:分段函數(shù)的零點(diǎn)問題【例8】(2023·天津南開·高三南開中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練25】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,函數(shù)SKIPIF1<0恰有3個(gè)零點(diǎn),則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練26】(2023·陜西西安·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為(
)A.1 B.3 C.4 D.5【對(duì)點(diǎn)訓(xùn)練27】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有5個(gè)零點(diǎn),則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解題總結(jié)】已知函數(shù)零點(diǎn)個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.題型九:零點(diǎn)嵌套問題【例9】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有三個(gè)不同的零點(diǎn)SKIPIF1<0.其中SKIPIF1<0,則SKIPIF1<0的值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練28】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,有三個(gè)不同的零點(diǎn),(其中SKIPIF1<0),則SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.-1 D.1【對(duì)點(diǎn)訓(xùn)練29】(2023·遼寧·校聯(lián)考二模)已知函數(shù)SKIPIF1<0有三個(gè)不同的零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(
)A.81 B.﹣81 C.﹣9 D.9【對(duì)點(diǎn)訓(xùn)練30】(2023·重慶南岸·高三重慶市第十一中學(xué)校??茧A段練習(xí))設(shè)定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0有三個(gè)不同的零點(diǎn)SKIPIF1<0且SKIPIF1<0則SKIPIF1<0的值是(
)A.81 B.-81 C.9 D.-9【解題總結(jié)】解決函數(shù)零點(diǎn)問題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.題型十:等高線問題【例10】(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0①若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0②若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0③若方程SKIPIF1<0有四個(gè)不同的實(shí)根,則SKIPIF1<0的取值范圍是SKIPIF1<0④方程SKIPIF1<0的不同實(shí)根的個(gè)數(shù)只能是1,2,3,6四個(gè)結(jié)論中,正確的結(jié)論個(gè)數(shù)為(
)A.1 B.2 C.3 D.4【對(duì)點(diǎn)訓(xùn)練31】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有四個(gè)不同的解SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練32】(2023·四川瀘州·高一四川省瀘縣第四中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練33】(2023·全國·高三專題練習(xí))已知函數(shù)f(x)=SKIPIF1<0,若互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則SKIPIF1<0的取值范圍是(
)A.(SKIPIF1<0) B.(1,4) C.(SKIPIF1<0,4) D.(4,6)【解題總結(jié)】數(shù)形結(jié)合數(shù)學(xué)思想方法題型十一:二分法【例11】(2023·遼寧大連·統(tǒng)考一模)牛頓迭代法是我們求方程近似解的重要方法.對(duì)于非線性可導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0附近一點(diǎn)的函數(shù)值可用SKIPIF1<0代替,該函數(shù)零點(diǎn)更逼近方程的解,以此法連續(xù)迭代,可快速求得合適精度的方程近似解.利用這個(gè)方法,解方程SKIPIF1<0,選取初始值SKIPIF1<0,在下面四個(gè)選項(xiàng)中最佳近似解為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【對(duì)點(diǎn)訓(xùn)練34】(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,參考數(shù)據(jù)如下:SKIPIF1<0
SKIPIF1<0
SKIPIF1<0SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國移動(dòng)河北公司校園實(shí)習(xí)生招聘440人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國電力貴州工程限公司招聘667人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國廣核集團(tuán)聯(lián)合培養(yǎng)招聘(黑龍江)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國出口信用保險(xiǎn)公司校園招聘100人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國中鐵華南區(qū)域總部(中鐵南方)畢業(yè)生招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年福建寧德霞浦縣事業(yè)單位招考緊缺急需人才20高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年廣東省深圳市龍華區(qū)事業(yè)單位考試筆試高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年安徽黃山市黟縣事業(yè)單位招聘31人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川遂寧市安居區(qū)部分事業(yè)單位考試招聘29人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川省廣元市朝天區(qū)委組織部人力資源和社會(huì)保障局招聘20人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 內(nèi)控合規(guī)風(fēng)險(xiǎn)管理手冊
- 透析中合并心衰護(hù)理課件
- 胃腸外科病人圍手術(shù)期營養(yǎng)管理專家共識(shí)護(hù)理課件
- 玫瑰花觀察報(bào)告
- 2024屆高考語文復(fù)習(xí):小說敘述特色專題復(fù)習(xí) 課件
- 流行性感冒健康宣教
- 四川省普通高中2024屆高三上學(xué)期學(xué)業(yè)水平考試數(shù)學(xué)試題(解析版)
- 超市外賣運(yùn)營技巧培訓(xùn)方案
- 埋件檢查及后補(bǔ)埋件方案
- 公司股權(quán)交接協(xié)議書樣本
- 北京市石景山區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末歷史試題
評(píng)論
0/150
提交評(píng)論