




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第13講拓展六:泰勒展開式與超越不等式在導(dǎo)數(shù)中的應(yīng)用(精講)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:典型例題剖析高頻考點(diǎn)一:利用超越不等式比較大小高頻考點(diǎn)二:利用對(duì)數(shù)型超越放縮證明不等式高頻考點(diǎn)三:利用指數(shù)型超越放縮證明不等式第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、泰勒公式形式:泰勒公式是將一個(gè)在SKIPIF1<0處具有SKIPIF1<0階導(dǎo)數(shù)的函數(shù)利用關(guān)于SKIPIF1<0的SKIPIF1<0次多項(xiàng)式來逼近函數(shù)的方法.若函數(shù)SKIPIF1<0在包含SKIPIF1<0的某個(gè)閉區(qū)間SKIPIF1<0上具有SKIPIF1<0階導(dǎo)數(shù),且在開區(qū)間SKIPIF1<0上具有SKIPIF1<0階導(dǎo)數(shù),則對(duì)閉區(qū)間SKIPIF1<0上任意一點(diǎn)SKIPIF1<0,成立下式:SKIPIF1<0其中:SKIPIF1<0表示SKIPIF1<0在SKIPIF1<0處的SKIPIF1<0階導(dǎo)數(shù),等號(hào)后的多項(xiàng)式稱為函數(shù)SKIPIF1<0在SKIPIF1<0處的泰勒展開式,剩余的SKIPIF1<0是泰勒公式的余項(xiàng),是SKIPIF1<0的高階無窮小量.2、麥克勞林(Maclaurin)公式SKIPIF1<0雖然麥克勞林公式是泰勒中值定理的特殊形式,僅僅是取SKIPIF1<0的特殊結(jié)果,由于麥克勞林公式使用方便,在高考中經(jīng)常會(huì)涉及到.3、常見函數(shù)的麥克勞林展開式:(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0(5)SKIPIF1<0(6)SKIPIF1<04、兩個(gè)超越不等式:(注意解答題需先證明后使用)4.1對(duì)數(shù)型超越放縮:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0上式(1)中等號(hào)右邊只取第一項(xiàng)得:SKIPIF1<0SKIPIF1<0結(jié)論①用SKIPIF1<0替換上式結(jié)論①中的SKIPIF1<0得:SKIPIF1<0SKIPIF1<0結(jié)論②對(duì)于結(jié)論②左右兩邊同乘“SKIPIF1<0”得SKIPIF1<0,用SKIPIF1<0替換“SKIPIF1<0”得:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0結(jié)論③4.2指數(shù)型超越放縮:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0上式(2)中等號(hào)右邊只取前2項(xiàng)得:SKIPIF1<0SKIPIF1<0結(jié)論①用SKIPIF1<0替換上式結(jié)論①中的SKIPIF1<0得:SKIPIF1<0SKIPIF1<0結(jié)論②當(dāng)SKIPIF1<0時(shí),對(duì)于上式結(jié)論②SKIPIF1<0SKIPIF1<0結(jié)論③當(dāng)SKIPIF1<0時(shí),對(duì)于上式結(jié)論②SKIPIF1<0SKIPIF1<0結(jié)論④第二部分:典型例題剖析第二部分:典型例題剖析高頻考點(diǎn)一:利用超越不等式比較大小1.(2022·全國(guó)·高三專題練習(xí)(文))已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】先用導(dǎo)數(shù)證明這兩個(gè)重要的不等式①SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“=”SKIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)遞減,SKIPIF1<0函數(shù)遞增故SKIPIF1<0時(shí)函數(shù)取得最小值為0故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“=”②SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“=”SKIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)遞增,SKIPIF1<0函數(shù)遞減,故SKIPIF1<0時(shí)函數(shù)取得最大值為0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“=”故SKIPIF1<0SKIPIF1<0故選:C2.(2021·安徽·毛坦廠中學(xué)高三階段練習(xí)(理))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,(其中自然對(duì)數(shù)的底數(shù)SKIPIF1<0)則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上SKIPIF1<0遞增,在SKIPIF1<0上SKIPIF1<0遞減,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,考慮到SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0等號(hào)當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取到,故SKIPIF1<0時(shí)SKIPIF1<0,排除A,B.下面比較a,b大小,由SKIPIF1<0得,SKIPIF1<0,故SKIPIF1<0.所以SKIPIF1<0.故選:D3.(2022·全國(guó)·高三專題練習(xí))已知實(shí)數(shù)a,b,c滿足SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決本題的關(guān)鍵是利用經(jīng)典不等式SKIPIF1<0可得SKIPIF1<0.4.(2022·河南洛陽·高二期末(文))下列結(jié)論中正確的個(gè)數(shù)為(
)①SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.A.0 B.1 C.2 D.3【答案】C【詳解】解:令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故①正確;令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0,故②正確;令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故③錯(cuò)誤;故選:C5.(2021·浙江·模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,給出以下結(jié)論,正確的個(gè)數(shù)是(
)①SKIPIF1<0;②SKIPIF1<0;③存在無窮多個(gè)SKIPIF1<0,使SKIPIF1<0;④SKIPIF1<0A.4 B.3 C.2 D.1【答案】B【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增且大于0,所以SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0故①正確;令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故②正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由歸納法可知,SKIPIF1<0,故不存在無窮多個(gè)SKIPIF1<0,使SKIPIF1<0,故③錯(cuò)誤;由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,累加可得:SKIPIF1<0可知④正確.故選:B.7.(2022·安徽·六安一中高二開學(xué)考試)已知SKIPIF1<0成等比數(shù)列,且SKIPIF1<0,若SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0成等比數(shù)列,且SKIPIF1<0,設(shè)其公比為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)中的不等式在數(shù)列中的應(yīng)用,以及等比數(shù)列的相關(guān)性質(zhì),屬于中檔題.導(dǎo)數(shù)中存在著一些常用的不等式結(jié)論,學(xué)生可以盡可能掌握.高頻考點(diǎn)二:利用對(duì)數(shù)型超越放縮證明不等式1.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)f(x)=lnx-ax+1在x=2處的切線斜率為-SKIPIF1<0.(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=SKIPIF1<0,對(duì)?x1SKIPIF1<0(0,+∞),?x2SKIPIF1<0(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;(3)證明:SKIPIF1<0+SKIPIF1<0+…+SKIPIF1<0(n∈N*,n≥2).【答案】(1)a=1,增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)SKIPIF1<0(3)證明見解析(1)由已知得f′(x)=SKIPIF1<0-a,∴f′(2)=SKIPIF1<0-a=-SKIPIF1<0,解得a=1.于是f′(x)=SKIPIF1<0-1=SKIPIF1<0,當(dāng)xSKIPIF1<0(0,1)時(shí),f′(x)>0,f(x)為增函數(shù),當(dāng)xSKIPIF1<0(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),即f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).(2)由(1)知x1SKIPIF1<0(0,+∞),f(x1)≤f(1)=0,即f(x1)的最大值為0,由題意知:對(duì)?x1SKIPIF1<0(0,+∞),?x2SKIPIF1<0(-∞,0)使得f(x1)≤g(x2)成立,只需f(x)max≤g(x)max.∵g(x)=SKIPIF1<0SKIPIF1<0,(SKIPIF1<0等號(hào)成立)∴只需SKIPIF1<0,解得SKIPIF1<0.(3)證明:要證明SKIPIF1<0(nSKIPIF1<0N*,n≥2).只需證SKIPIF1<0,只需證SKIPIF1<0.由(1)當(dāng)xSKIPIF1<0(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),f(x)=lnx-x+1≤0,即lnx≤x-1,∴當(dāng)n≥2時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0.2.(2022·河南·林州一中高二期中(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)見解析(2)證明見解析(1)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增當(dāng)SKIPIF1<0時(shí),SKIPIF1<0故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增(2)由(1)可知,SKIPIF1<0令SKIPIF1<0,SKIPIF1<0即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0故SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0即SKIPIF1<03.(2022·陜西咸陽·二模(文))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)由題意得:SKIPIF1<0定義域?yàn)镾KIPIF1<0;由SKIPIF1<0得:SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)由(1)知:當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到恒成立問題求解和不等式的證明問題;證明不等式的關(guān)鍵是能夠充分利用(1)中的結(jié)論,將所證不等式進(jìn)行放縮,從而結(jié)合等比數(shù)列求和的知識(shí)進(jìn)行證明.4.(2022·陜西咸陽·二模(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實(shí)數(shù)k的取值范圍;(2)證明:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0).【答案】(1)SKIPIF1<0;(2)證明見解析﹒【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,當(dāng)x>1時(shí),SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0;(2)由(1)知,SKIPIF1<0時(shí),有不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取“=”號(hào),∴SKIPIF1<0,SKIPIF1<0恒成立,令SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0),則SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0(SKIPIF1<0,SKIPIF1<0).【點(diǎn)睛】本題關(guān)鍵是利用(1)中的結(jié)論,取k=1時(shí)得到不等式SKIPIF1<0,從而得到x>1時(shí),SKIPIF1<0,令SKIPIF1<0,即可構(gòu)造不等式SKIPIF1<0,從而通過裂項(xiàng)相消法求出SKIPIF1<0的范圍,從而證明結(jié)論.5.(2022·重慶市實(shí)驗(yàn)中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0;(3)求證:對(duì)任意的SKIPIF1<0且SKIPIF1<0,都有:SKIPIF1<0…SKIPIF1<0.(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù))【答案】(1)答案見解析;(2)證明見解析;(3)證明見解析.【解析】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上調(diào)遞增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,要證明SKIPIF1<0,即證SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.(3)由(2)可得SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立),令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0…SKIPIF1<0…SKIPIF1<0…SKIPIF1<0SKIPIF1<0…SKIPIF1<0,即SKIPIF1<0…SKIPIF1<0,故SKIPIF1<0…SKIPIF1<0.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)單調(diào)性,以及構(gòu)造函數(shù)利用導(dǎo)數(shù)證明不等式,以及數(shù)列和導(dǎo)數(shù)的綜合,屬綜合困難題.6.(2022·內(nèi)蒙古·元寶山平煤高中高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)證明:SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;(2)證明見解析.【解析】(1)因?yàn)镾KIPIF1<0(SKIPIF1<0),所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上為增函數(shù);若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),由上可知SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,有SKIPIF1<0在SKIPIF1<0恒成立,且SKIPIF1<0在SKIPIF1<0上是減函數(shù),即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)成立.7.(2022·河南·林州一中高二期中(理))已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)證明:SKIPIF1<0;(3)若SKIPIF1<0且SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析(3)證明見解析【解析】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(2)由(1)可得SKIPIF1<0SKIPIF1<0即函數(shù)SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0(3)由(2)可得SKIPIF1<0在SKIPIF1<0上恒成立令SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0故SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決第三問時(shí),關(guān)鍵是由導(dǎo)數(shù)得出SKIPIF1<0,進(jìn)而由對(duì)數(shù)的運(yùn)算證明不等式.高頻考點(diǎn)三:利用指數(shù)型超越放縮證明不等式1.(2022·四川·棠湖中學(xué)高二階段練習(xí)(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時(shí),若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍;(3)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)證明見解析【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,切點(diǎn)為SKIPIF1<0,斜率SKIPIF1<0,.∴曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.即SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<0;(3)由(2)知SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0.①要證SKIPIF1<0,可證SKIPIF1<0,只需證SKIPIF1<0.先證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單減,在SKIPIF1<0上單增,∴SKIPIF1<0,故SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),從而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.②要證SKIPIF1<0,可證SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單增,在SKIPIF1<0上單減,故SKIPIF1<0,即SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),從而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,綜上所述,當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.【點(diǎn)睛】要證明SKIPIF1<0,可通過證明SKIPIF1<0來證得.在利用導(dǎo)數(shù)證明不等式的過程中,主要利用的是導(dǎo)數(shù)的工具性的作用,也即利用導(dǎo)數(shù)來求單調(diào)區(qū)間、最值等.2.(2022·河南省杞縣高中模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實(shí)數(shù)a的值;(2)若SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)1(2)證明見解析【解析】(1)設(shè)SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,不滿足SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0的最小值為SKIPIF1<0.即SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在(0,1)上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0,故SKIPIF1<0的解只有SKIPIF1<0.綜上,SKIPIF1<0.(2)證明:先證當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在(0,1)上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0.所以要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在(0,1)上單調(diào)遞減,所以SKIPIF1<0,即原不等式成立.所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)解決不等式恒成立問題,考查利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵是先證當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,然后將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,即證SKIPIF1<0,再構(gòu)造函數(shù)求出其最小值大于零即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題3.(2022·浙江省諸暨市第二高級(jí)中學(xué)模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(1)當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若SKIPIF1<0且SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍:(3)當(dāng)SKIPIF1<0時(shí),記SKIPIF1<0,SKIPIF1<0(其中SKIPIF1<0)為SKIPIF1<0在SKIPIF1<0上的兩個(gè)零點(diǎn),證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)詳見解析.(1)當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0;(2)由題意可知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0顯然成立,故SKIPIF1<0;當(dāng)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 分享護(hù)理文獻(xiàn)
- 羊駝創(chuàng)意畫課件
- 山西省平遙縣綜合職業(yè)技術(shù)學(xué)校2024-2025學(xué)年高三第二學(xué)期期終調(diào)研測(cè)試文生物試題試卷含解析
- 河北東方學(xué)院《文化人類學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 甘肅省會(huì)寧一中2025屆高三下學(xué)期4月月考化學(xué)試題含解析
- 南陽理工學(xué)院《統(tǒng)計(jì)分析與軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 唐山學(xué)院《太陽能發(fā)電技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古化工職業(yè)學(xué)院《企業(yè)戰(zhàn)略思考與行動(dòng)系列講座》2023-2024學(xué)年第二學(xué)期期末試卷
- 海東市重點(diǎn)中學(xué)2024-2025學(xué)年高考預(yù)測(cè)卷(全國(guó)I卷)數(shù)學(xué)試題試卷含解析
- 福建省六校2025年高三下第三次月考物理試題含解析
- 2025屆湖北省武漢市重點(diǎn)中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析
- 2023年國(guó)際貿(mào)易試題庫(kù)
- 商務(wù)樓裝修施工合同
- 網(wǎng)店推廣模擬習(xí)題及答案
- 道路管道清淤施工方案
- 九下語文教材課后習(xí)題答案
- 智能信貸風(fēng)控策略
- 五年(2020-2024)高考語文真題分類匯編專題04 古代詩歌鑒賞(解析版)
- 孕產(chǎn)婦高危五色管理(醫(yī)學(xué)講座培訓(xùn)課件)
- 地方導(dǎo)游基礎(chǔ)知識(shí)電子教案 專題七 學(xué)習(xí)情境四 新疆維吾爾自治區(qū)課時(shí)教案
- 2024年煙草知識(shí)考試題庫(kù)
評(píng)論
0/150
提交評(píng)論