山東、湖北部分重點中學2025屆高考仿真卷數學試卷含解析_第1頁
山東、湖北部分重點中學2025屆高考仿真卷數學試卷含解析_第2頁
山東、湖北部分重點中學2025屆高考仿真卷數學試卷含解析_第3頁
山東、湖北部分重點中學2025屆高考仿真卷數學試卷含解析_第4頁
山東、湖北部分重點中學2025屆高考仿真卷數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東、湖北部分重點中學2025屆高考仿真卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個3.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.4.若集合,,則()A. B. C. D.5.復數滿足(為虛數單位),則的值是()A. B. C. D.6.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數為().A.432 B.576 C.696 D.9607.已知向量與向量平行,,且,則()A. B.C. D.8.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.9.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.10.的展開式中的項的系數為()A.120 B.80 C.60 D.4011.已知,則,不可能滿足的關系是()A. B. C. D.12.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的各項均為正數,記為數列的前項和,若,,則______.14.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.15.函數的定義域是__________.16.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前n項和為,,公差,、、成等比數列,數列滿足.(1)求數列,的通項公式;(2)已知,求數列的前n項和.18.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數,建立了累計確診人數y與時間變量t的兩個回歸模型,根據1月15日至1月24日的數據(時間變量t的值依次1,2,…,10)建立模型和.(1)根據散點圖判斷,與哪一個適宜作為累計確診人數y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(1)的判斷結果及附表中數據,建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數的真實數據,根據(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數的真實數據19752744451559747111(?。┊?月25日至1月27日這3天的誤差(模型預測數據與真實數據差值的絕對值與真實數據的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數據明顯低于預測數據,則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數據(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數據:其中,.5.53901938576403152515470010015022533850719.(12分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點,,求四邊形面積的最大值.20.(12分)已知,,為正數,且,證明:(1);(2).21.(12分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大?。唬?)若,,求的值.22.(10分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數在上的零點個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.2、B【解析】

根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.3、B【解析】

為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.4、B【解析】

根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.5、C【解析】

直接利用復數的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數的除法的運算法則的應用,考查計算能力.6、B【解析】

先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產生的空檔中,共有種不同方式;根據分類加法、分步乘法原理,得滿足要求的排隊方法數為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.7、B【解析】

設,根據題意得出關于、的方程組,解出這兩個未知數的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數量積的坐標運算,考查計算能力,屬于中等題.8、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.9、C【解析】

畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數形結合思想和運算能力,屬于??碱}.10、A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.11、C【解析】

根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題12、A【解析】

設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題二、填空題:本題共4小題,每小題5分,共20分。13、63【解析】

對進行化簡,可得,再根據等比數列前項和公式進行求解即可【詳解】由數列為首項為,公比的等比數列,所以63【點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質14、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.15、【解析】由,得,所以,所以原函數定義域為,故答案為.16、【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),();(2).【解析】

(1)根據是等差數列,,、、成等比數列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當時,.②當時,.【點睛】此題等差數列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉化思想,屬于一般性題目.18、(1)適宜(2)(3)(ⅰ)回歸方程可靠(ⅱ)防護措施有效【解析】

(1)根據散點圖即可判斷出結果.(2)設,則,求出,再由回歸方程過樣本中心點求出,即可求出回歸方程.(3)(ⅰ)利用表中數據,計算出誤差即可判斷回歸方程可靠;(ⅱ)當時,,與真實值作比較即可判斷有效.【詳解】(1)根據散點圖可知:適宜作為累計確診人數與時間變量的回歸方程類型;(2)設,則,,,;(3)(ⅰ)時,,,當時,,,當時,,,所以(2)的回歸方程可靠:(ⅱ)當時,,10150遠大于7111,所以防護措施有效.【點睛】本題考查了函數模型的應用,在求非線性回歸方程時,現(xiàn)將非線性的化為線性的,考查了誤差的計算以及用函數模型分析數據,屬于基礎題.19、(1)(2)【解析】

(1)根據正弦定理化簡等式可得,即;(2)根據題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.20、(1)證明見解析;(2)證明見解析.【解析】

(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.21、(1);(2)【解析】

(1)由三角形面積公式,平面向量數量積的運算可得,結合范圍,可求,進而可求的值.(2)利用同角三角函數基本關系式可求,利用兩角和的正弦函數公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因為,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【點睛】本題主要考查了三角形面積公式,平面向量數量積的運算,同角三角函數基本關系式,兩角和的正弦函數公式,正弦定理在解三角形中的應用,考查了計算能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論