版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遂寧市重點中學2025屆高考考前提分數(shù)學仿真卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.252.計算等于()A. B. C. D.3.函數(shù)在上的圖象大致為()A. B. C. D.4.設,滿足,則的取值范圍是()A. B. C. D.5.已知函數(shù),若關于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.6.已知,則()A. B. C. D.7.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.8.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.9.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.10.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.11.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.12.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量的分布列如表所示,則______,______.-10114.已知函數(shù)的定義域為R,導函數(shù)為,若,且,則滿足的x的取值范圍為______.15.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.16.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據(jù)這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內的學生共有____人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產品的研發(fā)投入.為了對新研發(fā)的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.19.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.20.(12分)已知分別是內角的對邊,滿足(1)求內角的大?。?)已知,設點是外一點,且,求平面四邊形面積的最大值.21.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.22.(10分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由公差d=-2可知數(shù)列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.2、A【解析】
利用誘導公式、特殊角的三角函數(shù)值,結合對數(shù)運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數(shù)運算,屬于基礎題.3、C【解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.4、C【解析】
首先繪制出可行域,再繪制出目標函數(shù),根據(jù)可行域范圍求出目標函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數(shù)在點處取得最小值,故目標函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數(shù)的取值范圍的問題,屬于基礎題.5、D【解析】
討論,,三種情況,求導得到單調區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調遞增,在上單調遞減,且;當時,;當時,,,函數(shù)單調遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.6、D【解析】
根據(jù)指數(shù)函數(shù)的單調性,即當?shù)讛?shù)大于1時單調遞增,當?shù)讛?shù)大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質和指對函數(shù)的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.7、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨?。挥纸裹c,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.8、C【解析】
由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.9、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉化思想,涉及判斷條件的選擇,屬基礎題.10、B【解析】
畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結合思想,分類討論是解題的關鍵,屬于中檔題.11、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題12、B【解析】
設直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結果.【詳解】設,(,).易知直線l的斜率存在且不為0,設為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關系,考查韋達定理及向量的坐標之間的關系,考查計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.【點睛】本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.14、【解析】
構造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數(shù)奇偶性、單調性以及利用函數(shù)性質解不等式,考查綜合分析求解能力,屬中檔題.15、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.16、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)乙同學正確;(2).【解析】
(1)根據(jù)變量且有線性負相關關系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數(shù)據(jù),計算出誤差,求得“理想數(shù)據(jù)”的個數(shù),由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數(shù)據(jù)如下表:021212由上表可知,“理想數(shù)據(jù)”的個數(shù)為.用列舉法可知,從個不同數(shù)據(jù)里抽出個不同數(shù)據(jù)的方法有種.從符合條件的個不同數(shù)據(jù)中抽出個,還要在不符合條件的個不同數(shù)據(jù)中抽出個的方法有種.故所求概率為【點睛】本小題主要考查回歸直線方程的判斷,考查古典概型概率計算,考查數(shù)據(jù)處理能力,屬于中檔題.18、(1):;:.(2)【解析】
(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為.(2)由(1)得,的普通方程為,將其化為極坐標方程可得,當時,,,所以.19、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.20、(1)(2)【解析】
(1)首先利用誘導公式及兩角和的余弦公式得到,再由同角三角三角的基本關系得到,即可求出角;(2)由(1)知,是正三角形,設,由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設,由余弦定理得:,,,所以當時有最大值【點睛】本題考查同角三角函數(shù)的基本關系,三角恒等變換公式的應用,三角形面積公式的應用,以及正弦函數(shù)的性質,屬于中檔題.21、(1)(2)【解析】
(1)直接利用極坐標公式計算得到答案(2)設,,根據(jù)三角函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 節(jié)能技術項目合同管理與糾紛處理考核試卷
- 天津市飼料(添加劑)買賣合同
- 個人建房施工合同
- 貨物配送合同
- 國際服務貿易合同范本
- 資產轉讓合同書模板
- 2025光伏電站施工合同模板
- 室內裝飾裝修設計合同
- 簡易版勞務承包合同書范本1
- 四害防治合同
- Cinema 4D從入門到精通PPT完整版全套教學課件
- T-SHSPTA 002-2023 藥品上市許可持有人委托銷售管理規(guī)范
- 我國雙語教育發(fā)展現(xiàn)狀以及建議
- 放射治療技術常用放射治療設備課件
- 保研推免個人簡歷
- 《計算機組成原理》武漢大學2023級期末考試試題答案
- 廣東廣州白云區(qū)2021學年第二學期期末學生學業(yè)質量診斷調研六年級語文(含答案)
- 公安院校公安專業(yè)招生體檢表
- 2023-2024學年四川省瀘州市小學數(shù)學四年級上冊期末評估測試題
- GB/T 9944-2015不銹鋼絲繩
- GB/T 5019.11-2009以云母為基的絕緣材料第11部分:塑型云母板
評論
0/150
提交評論