![湖北省隨州市隨縣2024年高三3月第二次階段考數(shù)學(xué)試題_第1頁(yè)](http://file4.renrendoc.com/view12/M01/25/11/wKhkGWdNIPuAGxIrAAIEcfgDPNo350.jpg)
![湖北省隨州市隨縣2024年高三3月第二次階段考數(shù)學(xué)試題_第2頁(yè)](http://file4.renrendoc.com/view12/M01/25/11/wKhkGWdNIPuAGxIrAAIEcfgDPNo3502.jpg)
![湖北省隨州市隨縣2024年高三3月第二次階段考數(shù)學(xué)試題_第3頁(yè)](http://file4.renrendoc.com/view12/M01/25/11/wKhkGWdNIPuAGxIrAAIEcfgDPNo3503.jpg)
![湖北省隨州市隨縣2024年高三3月第二次階段考數(shù)學(xué)試題_第4頁(yè)](http://file4.renrendoc.com/view12/M01/25/11/wKhkGWdNIPuAGxIrAAIEcfgDPNo3504.jpg)
![湖北省隨州市隨縣2024年高三3月第二次階段考數(shù)學(xué)試題_第5頁(yè)](http://file4.renrendoc.com/view12/M01/25/11/wKhkGWdNIPuAGxIrAAIEcfgDPNo3505.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省隨州市隨縣2024年高三3月第二次階段考數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知角的終邊經(jīng)過點(diǎn)P(),則sin()=A. B. C. D.2.若復(fù)數(shù),則()A. B. C. D.203.的展開式中的一次項(xiàng)系數(shù)為()A. B. C. D.4.袋中裝有標(biāo)號(hào)為1,2,3,4,5,6且大小相同的6個(gè)小球,從袋子中一次性摸出兩個(gè)球,記下號(hào)碼并放回,如果兩個(gè)號(hào)碼的和是3的倍數(shù),則獲獎(jiǎng),若有5人參與摸球,則恰好2人獲獎(jiǎng)的概率是()A. B. C. D.5.在長(zhǎng)方體中,,則直線與平面所成角的余弦值為()A. B. C. D.6.已知定點(diǎn),,是圓上的任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的垂直平分線與直線相交于點(diǎn),則點(diǎn)的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓7.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2828.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.9.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.10.已知拋物線經(jīng)過點(diǎn),焦點(diǎn)為,則直線的斜率為()A. B. C. D.11.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.63二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.14.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.15.已知,則______,______.16.的展開式中常數(shù)項(xiàng)是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出曲線的極坐標(biāo)方程;(2)點(diǎn)是曲線上的一點(diǎn),試判斷點(diǎn)與曲線的位置關(guān)系.18.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.19.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個(gè)零點(diǎn).20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長(zhǎng);(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.21.(12分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點(diǎn),求線段的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).2、B【解析】
化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.3、B【解析】
根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項(xiàng)系數(shù)為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.4、C【解析】
先確定摸一次中獎(jiǎng)的概率,5個(gè)人摸獎(jiǎng),相當(dāng)于發(fā)生5次試驗(yàn),根據(jù)每一次發(fā)生的概率,利用獨(dú)立重復(fù)試驗(yàn)的公式得到結(jié)果.【詳解】從6個(gè)球中摸出2個(gè),共有種結(jié)果,兩個(gè)球的號(hào)碼之和是3的倍數(shù),共有摸一次中獎(jiǎng)的概率是,5個(gè)人摸獎(jiǎng),相當(dāng)于發(fā)生5次試驗(yàn),且每一次發(fā)生的概率是,有5人參與摸獎(jiǎng),恰好有2人獲獎(jiǎng)的概率是,故選:.【點(diǎn)睛】本題主要考查了次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次的概率,考查獨(dú)立重復(fù)試驗(yàn)的概率,解題時(shí)主要是看清摸獎(jiǎng)5次,相當(dāng)于做了5次獨(dú)立重復(fù)試驗(yàn),利用公式做出結(jié)果,屬于中檔題.5、C【解析】
在長(zhǎng)方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長(zhǎng)方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.6、B【解析】
根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因?yàn)榫€段的垂直平分線與直線相交于點(diǎn),如下圖所示:所以有,而是中點(diǎn),連接,故,因此當(dāng)在如下圖所示位置時(shí)有,所以有,而是中點(diǎn),連接,故,因此,綜上所述:有,所以點(diǎn)的軌跡是雙曲線.故選:B【點(diǎn)睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運(yùn)算能力和推理論證能力,考查了分類討論思想.7、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長(zhǎng)交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題8、D【解析】
可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、A【解析】
先求出,再求焦點(diǎn)坐標(biāo),最后求的斜率【詳解】解:拋物線經(jīng)過點(diǎn),,,,故選:A【點(diǎn)睛】考查拋物線的基礎(chǔ)知識(shí)及斜率的運(yùn)算公式,基礎(chǔ)題.11、B【解析】
設(shè)過點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.12、B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運(yùn)算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.14、【解析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點(diǎn)睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】
利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進(jìn)而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點(diǎn)睛】本題主要考查三角函數(shù)值的計(jì)算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.16、-160【解析】試題分析:常數(shù)項(xiàng)為.考點(diǎn):二項(xiàng)展開式系數(shù)問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點(diǎn)在曲線外.【解析】
(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標(biāo)方程;(2)由點(diǎn)是曲線上的一點(diǎn),利用的范圍判斷的范圍,即可判斷位置關(guān)系.【詳解】(1)由曲線的參數(shù)方程為可得曲線的普通方程為,則曲線的極坐標(biāo)方程為,即(2)由題,點(diǎn)是曲線上的一點(diǎn),因?yàn)?所以,即,所以點(diǎn)在曲線外.【點(diǎn)睛】本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,考查直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化,考查點(diǎn)與圓的位置關(guān)系.18、(1)見解析(2)【解析】
(1)取中點(diǎn),連接,,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時(shí),常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對(duì)于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為線面角的正弦值.19、見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時(shí),f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個(gè)零點(diǎn).顯然x∈(π,2π)時(shí),?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時(shí),f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點(diǎn).因?yàn)閒(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時(shí),f(x)>1,即f(x)在(?∞,?π)上也沒有零點(diǎn).故f(x)僅在,上各有一個(gè)零點(diǎn),即f(x)在R上有且僅有兩個(gè)零點(diǎn).20、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長(zhǎng);(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個(gè)交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡(jiǎn)可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.21、(1)證明見解析;(2).【解析】
(1)取中點(diǎn),連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)?,平面,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過N作于E,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 3-1-Carboxyvinyloxy-benzoic-acid-生命科學(xué)試劑-MCE-7834
- 二零二五年度船舶入股船舶船員培訓(xùn)合作協(xié)議
- 2025年度時(shí)尚產(chǎn)品銷售總額提成與時(shí)尚趨勢(shì)合作合同
- 2025年度離職員工保密協(xié)議及競(jìng)業(yè)禁止條款合同
- 二零二五年度班組承包市場(chǎng)營(yíng)銷合作協(xié)議
- 2025年度酒店客房裝修風(fēng)格設(shè)計(jì)與施工合同
- 施工現(xiàn)場(chǎng)施工防生物毒素泄漏制度
- 施工日志填寫中的常見錯(cuò)誤及避免方法
- 現(xiàn)代科技下的學(xué)生心理發(fā)展研究
- 學(xué)校如何實(shí)施綠色化教學(xué)與管理
- 【學(xué)前教育小學(xué)化成因分析及其對(duì)策10000字(論文)】
- 腕管綜合征課件
- 事業(yè)單位工作人員年度考核登記表(通用模板)
- 人教版七年級(jí)數(shù)學(xué)下冊(cè)《垂線》
- 公開選拔村級(jí)后備干部報(bào)名登記表
- 2022年湖南公務(wù)員考試《申論》真題套卷(鄉(xiāng)鎮(zhèn)卷)2
- 【薪酬】國(guó)有企業(yè)中長(zhǎng)期股權(quán)激勵(lì)課件
- 《新聞攝影教程(第五版)》第三章 新聞攝影工作者的職責(zé)與素養(yǎng)
- 學(xué)前兒童行為觀察第一章觀察概述課件
- 化學(xué)品防范說明編碼
- 帕金森病(英文版)課件
評(píng)論
0/150
提交評(píng)論