2025屆廣東省汕頭潮陽(yáng)區(qū)高考仿真卷數(shù)學(xué)試題含解析_第1頁(yè)
2025屆廣東省汕頭潮陽(yáng)區(qū)高考仿真卷數(shù)學(xué)試題含解析_第2頁(yè)
2025屆廣東省汕頭潮陽(yáng)區(qū)高考仿真卷數(shù)學(xué)試題含解析_第3頁(yè)
2025屆廣東省汕頭潮陽(yáng)區(qū)高考仿真卷數(shù)學(xué)試題含解析_第4頁(yè)
2025屆廣東省汕頭潮陽(yáng)區(qū)高考仿真卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣東省汕頭潮陽(yáng)區(qū)高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知不同直線、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則2.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或93.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.4.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過(guò)的()A.重心 B.垂心 C.外心 D.內(nèi)心5.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)6.射線測(cè)厚技術(shù)原理公式為,其中分別為射線穿過(guò)被測(cè)物前后的強(qiáng)度,是自然對(duì)數(shù)的底數(shù),為被測(cè)物厚度,為被測(cè)物的密度,是被測(cè)物對(duì)射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測(cè)量鋼板的厚度.若這種射線對(duì)鋼板的半價(jià)層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價(jià)層厚度是指將已知射線強(qiáng)度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.7.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.38.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.9.若函數(shù)的圖象過(guò)點(diǎn),則它的一條對(duì)稱軸方程可能是()A. B. C. D.10.函數(shù)的圖象大致為()A. B.C. D.11.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入的值為2,則輸出的值為A. B. C. D.12.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或二、填空題:本題共4小題,每小題5分,共20分。13.命題“對(duì)任意,”的否定是.14.已知是等比數(shù)列,且,,則__________,的最大值為_(kāi)_________.15.二項(xiàng)式的展開(kāi)式的各項(xiàng)系數(shù)之和為_(kāi)____,含項(xiàng)的系數(shù)為_(kāi)____.16.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.18.(12分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實(shí)數(shù)的取值范圍;(2)若,證明:.19.(12分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.20.(12分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.21.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.22.(10分)唐詩(shī)是中國(guó)文學(xué)的瑰寶.為了研究計(jì)算機(jī)上唐詩(shī)分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩(shī)分成7大類別,并從《全唐詩(shī)》48900多篇唐詩(shī)中隨機(jī)抽取了500篇,統(tǒng)計(jì)了每個(gè)類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛(ài)情婚姻詠史懷古邊塞戰(zhàn)爭(zhēng)山水田園交游送別羈旅思鄉(xiāng)其他總計(jì)篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩(shī)》含“山”字的唐詩(shī)中隨機(jī)抽取一篇,則它屬于哪個(gè)類別的可能性最大,屬于哪個(gè)類別的可能性最小,并分別估計(jì)該唐詩(shī)屬于這兩個(gè)類別的概率;(2)已知檢索關(guān)鍵字的選取規(guī)則為:①若有超過(guò)95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;②若“某字”被選為“某類別”關(guān)鍵字,則由其對(duì)應(yīng)列聯(lián)表得到的的觀測(cè)值越大,排名就越靠前;設(shè)“山”“簾”“花”和“愛(ài)情婚姻”對(duì)應(yīng)的觀測(cè)值分別為,,.已知,,請(qǐng)完成下面列聯(lián)表,并從上述三個(gè)字中選出“愛(ài)情婚姻”類別的關(guān)鍵字并排名.屬于“愛(ài)情婚姻”類不屬于“愛(ài)情婚姻”類總計(jì)含“花”字的篇數(shù)不含“花”的篇數(shù)總計(jì)附:,其中.0.050.0250.0103.8415.0246.635

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.2、C【解析】

由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.3、B【解析】

試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問(wèn)題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常??紤]用拋物線的定義進(jìn)行問(wèn)題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過(guò)余弦定理建立關(guān)系.4、B【解析】

解出,計(jì)算并化簡(jiǎn)可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過(guò)△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.5、C【解析】

利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因?yàn)椋栽谏蠁握{(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6、C【解析】

根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因?yàn)?所以,即.所以這種射線的吸收系數(shù)為.故選:C【點(diǎn)睛】本題主要考查知識(shí)的遷移能力,把數(shù)學(xué)知識(shí)與物理知識(shí)相融合;重點(diǎn)考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來(lái)研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.7、A【解析】

分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.8、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.9、B【解析】

把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對(duì)稱軸.故選:B.【點(diǎn)睛】本題考查正弦型復(fù)合函數(shù)的對(duì)稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.10、A【解析】

用偶函數(shù)的圖象關(guān)于軸對(duì)稱排除,用排除,用排除.故只能選.【詳解】因?yàn)?所以函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,故可以排除;因?yàn)?故排除,因?yàn)橛蓤D象知,排除.故選:A【點(diǎn)睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.11、C【解析】

由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運(yùn)行過(guò)程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.二、填空題:本題共4小題,每小題5分,共20分。13、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.14、5【解析】,即的最大值為15、【解析】

將代入二項(xiàng)式可得展開(kāi)式各項(xiàng)系數(shù)之和,寫出二項(xiàng)展開(kāi)式通項(xiàng),令的指數(shù)為,求出參數(shù)的值,代入通項(xiàng)即可得出項(xiàng)的系數(shù).【詳解】將代入二項(xiàng)式可得展開(kāi)式各項(xiàng)系數(shù)和為.二項(xiàng)式的展開(kāi)式通項(xiàng)為,令,解得,因此,展開(kāi)式中含項(xiàng)的系數(shù)為.故答案為:;.【點(diǎn)睛】本題考查了二項(xiàng)式定理及二項(xiàng)式展開(kāi)式通項(xiàng)公式,屬基礎(chǔ)題.16、【解析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點(diǎn)睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2).【解析】

(1)通過(guò)討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問(wèn)題轉(zhuǎn)化為曲線交點(diǎn)問(wèn)題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點(diǎn)睛】該題考查的是有關(guān)不等式的問(wèn)題,涉及到的知識(shí)點(diǎn)有分類討論求絕對(duì)值不等式的解集,將零點(diǎn)問(wèn)題轉(zhuǎn)化為曲線交點(diǎn)的問(wèn)題來(lái)解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡(jiǎn)單題目.18、(1)(2)證明見(jiàn)解析【解析】

(1)求出導(dǎo)函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時(shí)可證結(jié)論.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞減,所以,即在上恒成立因?yàn)樵谏鲜菃握{(diào)遞減的,所以,所以(2)因?yàn)椋杂桑?)知,當(dāng)時(shí),在上單調(diào)遞減所以即所以.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.解題關(guān)鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來(lái),利用函數(shù)的特例得出不等式的證明.19、(1)極大值是,無(wú)極小值;(2)【解析】

(1)當(dāng)時(shí),可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點(diǎn),從而可得原函數(shù)的極值點(diǎn)及極大值;(2)表示出,并求得,由題意,得方程有兩個(gè)不同的實(shí)根,,從而可得△及,由,得.則可化為對(duì)任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時(shí),.令,則,顯然在上單調(diào)遞減,又因?yàn)?,故時(shí),總有,所以在上單調(diào)遞減.由于,所以當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)變化時(shí),的變化情況如下表:+-增極大減所以在上的極大值是,無(wú)極小值.(2)由于,則.由題意,方程有兩個(gè)不等實(shí)根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當(dāng)時(shí),不等式恒成立,即.當(dāng)時(shí),恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時(shí),,故.當(dāng)時(shí),恒成立,即,因此,當(dāng)時(shí),所以.綜上所述,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識(shí),考查分類討論思想、轉(zhuǎn)化思想,考查學(xué)生綜合運(yùn)用知識(shí)分析問(wèn)題解決問(wèn)題的能力,該題綜合性強(qiáng),難度大,對(duì)能力要求較高.20、(1)證明見(jiàn)解析(2)【解析】

(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計(jì)算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【詳解】(1)因?yàn)镈E⊥平面ABCD,所以DEAD,因?yàn)锳D=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因?yàn)锽E平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標(biāo)系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,﹣3),,設(shè)平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個(gè)法向量為,所以,故.【點(diǎn)睛】本題考查線面平行的判定以及利用建系方法解決面面角問(wèn)題,屬基礎(chǔ)題.21、(1)見(jiàn)解析;(2).【解析】

(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)?,所?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)椋?,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論