新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題13 雙曲線中的定點(diǎn)、定值、定直線問題(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題13 雙曲線中的定點(diǎn)、定值、定直線問題(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題13 雙曲線中的定點(diǎn)、定值、定直線問題(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題13 雙曲線中的定點(diǎn)、定值、定直線問題(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題13 雙曲線中的定點(diǎn)、定值、定直線問題(解析版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題13雙曲線中的定點(diǎn)、定值、定直線問題限時:120分鐘滿分:150分一、單選題:本大題共8小題,每個小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.P為橢圓SKIPIF1<0上異于左右頂點(diǎn)SKIPIF1<0,SKIPIF1<0的任意一點(diǎn),則直線SKIPIF1<0與SKIPIF1<0的斜率之積為定值SKIPIF1<0,將這個結(jié)論類比到雙曲線,得出的結(jié)論為:P為雙曲線SKIPIF1<0上異于左右頂點(diǎn)SKIPIF1<0,SKIPIF1<0的任意一點(diǎn),則(

)A.直線SKIPIF1<0與SKIPIF1<0的斜率之和為定值SKIPIF1<0B.直線SKIPIF1<0與SKIPIF1<0的斜率之積為定值SKIPIF1<0C.直線SKIPIF1<0與SKIPIF1<0的斜率之和為定值SKIPIF1<0D.直線SKIPIF1<0與SKIPIF1<0的斜率之積為定值SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,即:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為定值.故選:D.2.已知直線l:SKIPIF1<0與雙曲線C:SKIPIF1<0交于P,Q兩點(diǎn),QH⊥x軸于點(diǎn)H,直線PH與雙曲線C的另一個交點(diǎn)為T,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.3.已知A,B是雙曲線Γ:SKIPIF1<0=1(a>0,b>0)的左、右頂點(diǎn),動點(diǎn)P在Γ上且P在第一象限.若PA,PB的斜率分別為k1,k2,則以下總為定值的是()A.k1+k2 B.|k1-k2|C.k1k2 D.SKIPIF1<0【解析】由題意可得A(-a,0),B(a,0),設(shè)P(m,n)(m>0,n>0),可得SKIPIF1<0即SKIPIF1<0,又k1=SKIPIF1<0,所以k1k2=SKIPIF1<0SKIPIF1<0,所以k1k2為定值SKIPIF1<0,不為定值;SKIPIF1<0,不為定值;SKIPIF1<0,不為定值故選:C4.已知雙曲線SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0為雙曲線上兩動點(diǎn),且SKIPIF1<0,則SKIPIF1<0(

)A.2 B.1 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意設(shè)SKIPIF1<0直線方程為SKIPIF1<0,SKIPIF1<0直線方程為SKIPIF1<0,設(shè)SKIPIF1<0則SKIPIF1<0,同理SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.故選:D5.已知SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的焦點(diǎn),SKIPIF1<0是過焦點(diǎn)SKIPIF1<0的弦,且SKIPIF1<0的傾斜角為SKIPIF1<0,那么SKIPIF1<0的值為()A.16 B.12 C.8 D.隨SKIPIF1<0變化而變化【解析】由雙曲線方程SKIPIF1<0知,SKIPIF1<0,雙曲線的漸近線方程為SKIPIF1<0直線SKIPIF1<0的傾斜角為SKIPIF1<0,所以SKIPIF1<0,又直線SKIPIF1<0過焦點(diǎn)SKIPIF1<0,如圖所以直線SKIPIF1<0與雙曲線的交點(diǎn)都在左支上.由雙曲線的定義得,SKIPIF1<0…………(1),SKIPIF1<0…………(2)由(1)+(2)得SKIPIF1<0,SKIPIF1<0.故選:A6.已知雙曲線SKIPIF1<0:SKIPIF1<0的漸近線方程為SKIPIF1<0,且焦距為SKIPIF1<0,過雙曲線SKIPIF1<0中心的直線與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),在雙曲線SKIPIF1<0上取一點(diǎn)SKIPIF1<0(異于SKIPIF1<0),直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】雙曲線SKIPIF1<0的兩條漸近線方程為SKIPIF1<0,所以SKIPIF1<0,因?yàn)榻咕酁镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故雙曲線的方程為SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0,則根據(jù)對稱性可知SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,兩式相減可得SKIPIF1<0.故選:B7.已知雙曲線SKIPIF1<0的離心率為3,斜率為SKIPIF1<0的直線SKIPIF1<0分別交F的左右兩支于A,B兩點(diǎn),直線SKIPIF1<0分別交F的左、右兩支于C,D兩點(diǎn),SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點(diǎn)E,點(diǎn)E恒在直線l上,若直線l的斜率存在,則直線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題得SKIPIF1<0,設(shè)SKIPIF1<0的中點(diǎn)SKIPIF1<0的中點(diǎn)SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0①,同理得SKIPIF1<0②,因?yàn)镾KIPIF1<0,則E,M,N三點(diǎn)共線,所以SKIPIF1<0,將①②代入得SKIPIF1<0,即SKIPIF1<0,因?yàn)橹本€l的斜率存在,所以SKIPIF1<0,所以SKIPIF1<0,即點(diǎn)E在直線SKIPIF1<0上.故選:A.8.?dāng)?shù)學(xué)美的表現(xiàn)形式多種多樣,其中美麗的黃金分割線分出的又豈止身材的絕妙配置,我們稱SKIPIF1<0(其中SKIPIF1<0)的雙曲線SKIPIF1<0為黃金雙曲線,若P為黃金雙曲線上除實(shí)軸端點(diǎn)外任意一點(diǎn),以原點(diǎn)O為圓心,實(shí)軸長為直徑作SKIPIF1<0,過P作SKIPIF1<0的兩條切線,切點(diǎn)分別為A,B,直線SKIPIF1<0與x,y軸分別交于M,N兩點(diǎn),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.由題意SKIPIF1<0四點(diǎn)共圓,圓心為SKIPIF1<0的中點(diǎn)SKIPIF1<0,半徑為SKIPIF1<0,所以方程為SKIPIF1<0;SKIPIF1<0的方程為SKIPIF1<0;兩式相減可得直線SKIPIF1<0的方程SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0,所以SKIPIF1<0.故選:B.二、多選題:本大題共4小題,每個小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,下列結(jié)論正確的是(

)A.SKIPIF1<0B.雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0C.存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0D.點(diǎn)SKIPIF1<0到兩漸近線的距離的乘積為SKIPIF1<0【解析】對于A選項(xiàng),因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,雙曲線SKIPIF1<0的方程為SKIPIF1<0,則SKIPIF1<0,A錯;對于B選項(xiàng),雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,B對;對于C選項(xiàng),若存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則點(diǎn)SKIPIF1<0必在雙曲線SKIPIF1<0的右支上,由雙曲線的定義可得SKIPIF1<0,可得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,矛盾,故不存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,C錯;對于D選項(xiàng),設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,SKIPIF1<0,D對.故選:BD.10.已知A,B分別為雙曲線SKIPIF1<0的左、右頂點(diǎn),P為該曲線上不同于A,B的任意一點(diǎn)設(shè)SKIPIF1<0的面積為S,則(

)A.SKIPIF1<0為定值 B.SKIPIF1<0為定值C.SKIPIF1<0為定值 D.SKIPIF1<0為定值【解析】不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,其中SKIPIF1<0.對于選項(xiàng)A,SKIPIF1<0為定值.對于選項(xiàng)B,由于SKIPIF1<0,因此若SKIPIF1<0為定值,則SKIPIF1<0為定值,從而SKIPIF1<0和SKIPIF1<0是確定的值,矛盾,對于選項(xiàng)C,D,有SKIPIF1<0,因此SKIPIF1<0是定值,SKIPIF1<0不是定值.故選:AC.11.已知點(diǎn)P為雙曲線SKIPIF1<0上任意一點(diǎn),SKIPIF1<0為其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).過點(diǎn)P向雙曲線兩漸近線作垂線,設(shè)垂足分別為M、N,則下列所述正確的是(

)A.SKIPIF1<0為定值 B.O、P、M、N四點(diǎn)一定共圓C.SKIPIF1<0的最小值為SKIPIF1<0 D.存在點(diǎn)P滿足P、M、SKIPIF1<0三點(diǎn)共線時,P、N、SKIPIF1<0三點(diǎn)也共線【解析】設(shè)SKIPIF1<0,點(diǎn)SKIPIF1<0到漸近線SKIPIF1<0的距離為SKIPIF1<0,同理SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0(定值),故A正確;當(dāng)M、N均不與O重合時,由SKIPIF1<0,SKIPIF1<0和SKIPIF1<0均為直角三角形,故M,N兩點(diǎn)在以O(shè)P為直徑的圓上;當(dāng)M、N有與O重合時,也滿足O、P、M、N四點(diǎn)共圓.故B正確;由雙曲線的對稱性可知SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成立,故C正確;如圖,利用雙曲線的對稱性,不妨設(shè)直線SKIPIF1<0垂直一條漸近線,垂足為M;直線SKIPIF1<0垂直另一條漸近線且交雙曲線于點(diǎn)P,易知直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)始終落在y軸上,故D不正確.故選:ABC.12.已知雙曲線SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P是雙曲線C的右支上一點(diǎn),過點(diǎn)P的直線l與雙曲線C的兩條漸近線交于M,N,則(

)A.SKIPIF1<0的最小值為8B.若直線l經(jīng)過SKIPIF1<0,且與雙曲線C交于另一點(diǎn)Q,則SKIPIF1<0的最小值為6C.SKIPIF1<0為定值D.若直線l與雙曲線C相切,則點(diǎn)M,N的縱坐標(biāo)之積為SKIPIF1<0【解析】依題意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,雙曲線C的兩條漸近線方程為SKIPIF1<0,對于A,SKIPIF1<0,A正確;對于B,若Q在雙曲線C的右支,則通徑最短,通徑為SKIPIF1<0,若Q在雙曲線C的左支,則實(shí)軸最短,實(shí)軸長為SKIPIF1<0,B錯誤;對于C,SKIPIF1<0SKIPIF1<0SKIPIF1<0是定值,C正確;對于D,不妨設(shè)SKIPIF1<0,SKIPIF1<0,直線l的方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,若直線l與雙曲線C相切,則SKIPIF1<0,化簡整理得SKIPIF1<0,則點(diǎn)M,N的縱坐標(biāo)之積SKIPIF1<0,D正確.故選:ACD.

三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.設(shè)P是雙曲線SKIPIF1<0右支上任一點(diǎn),過點(diǎn)P分別作兩條漸近線的垂線,垂足分別為E、F,則SKIPIF1<0的值為.【解析】漸近線方程為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.由點(diǎn)到直線的距離公式有SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.14.已知雙曲線SKIPIF1<0的一條漸近線的傾斜角的正切值為SKIPIF1<0.若直線SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)與雙曲線交于A,B兩點(diǎn),直線SKIPIF1<0,SKIPIF1<0的斜率的倒數(shù)和為SKIPIF1<0,則直線SKIPIF1<0恒經(jīng)過的定點(diǎn)為.【解析】因?yàn)殡p曲線方程為SKIPIF1<0一條漸近線的傾斜角的正切值為SKIPIF1<0.所以SKIPIF1<0,解得SKIPIF1<0,所以雙曲線方程為SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,SKIPIF1<0.由韋達(dá)定理得SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,由題意知SKIPIF1<0,此時SKIPIF1<0.所以直線方程為SKIPIF1<0,恒經(jīng)過的定點(diǎn)為SKIPIF1<0.15.雙曲線SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0的左,右頂點(diǎn),SKIPIF1<0是SKIPIF1<0上異于SKIPIF1<0的一動點(diǎn),直線SKIPIF1<0分別與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,請寫出所有滿足條件SKIPIF1<0的定點(diǎn)SKIPIF1<0的坐標(biāo).【解析】SKIPIF1<0雙曲線SKIPIF1<0的離心率SKIPIF1<0,SKIPIF1<0,即雙曲線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0定點(diǎn)SKIPIF1<0或SKIPIF1<0.16.已知雙曲線SKIPIF1<0,過點(diǎn)SKIPIF1<0的動直線與C交于兩點(diǎn)P,Q,若曲線C上存在某定點(diǎn)A使得SKIPIF1<0為定值SKIPIF1<0,則SKIPIF1<0的值為.【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,要使SKIPIF1<0為定值SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.四、解答題:本大題共6小題,共70分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.17.從雙曲線SKIPIF1<0上一點(diǎn)SKIPIF1<0向SKIPIF1<0軸作垂線,垂足恰為左焦點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0分別是雙曲線的左、右頂點(diǎn),點(diǎn)SKIPIF1<0,且SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(1)求雙曲線的方程;(2)過點(diǎn)SKIPIF1<0作直線SKIPIF1<0分別交雙曲線左右兩支于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,證明:點(diǎn)SKIPIF1<0在定直線上.【解析】(1)令SKIPIF1<0,代入雙曲線方程可得SKIPIF1<0,所以設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以雙曲線的方程為SKIPIF1<0.

(2)設(shè)SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0,聯(lián)立SKIPIF1<0可得,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0

①直線SKIPIF1<0

②SKIPIF1<0

③由①÷②可得SKIPIF1<0SKIPIF1<0把③代入上式化簡可得SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0在定直線SKIPIF1<0上.

18.已知雙曲線SKIPIF1<0過點(diǎn)SKIPIF1<0,且焦距為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)已知過點(diǎn)SKIPIF1<0的動直線SKIPIF1<0交SKIPIF1<0的右支于SKIPIF1<0兩點(diǎn),SKIPIF1<0為線段SKIPIF1<0上的一點(diǎn),且滿足SKIPIF1<0,證明:點(diǎn)SKIPIF1<0總在某定直線上.【解析】(1)由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,記SKIPIF1<0,

又A、P、B、Q四點(diǎn)共線,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0,作差可得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,故點(diǎn)Q總在定直線SKIPIF1<0上.19.已知雙曲線SKIPIF1<0的焦距為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0上異于點(diǎn)SKIPIF1<0的兩點(diǎn),直線SKIPIF1<0與SKIPIF1<0軸分別相交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,求證:直線SKIPIF1<0過定點(diǎn),并求出該定點(diǎn)坐標(biāo).【解析】(1)由題意知SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)證明:設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,消去SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0方程為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,同理直線SKIPIF1<0方程為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時直線SKIPIF1<0方程為SKIPIF1<0,恒過定點(diǎn)SKIPIF1<0,不符合題意;當(dāng)SKIPIF1<0時,直線SKIPIF1<0方程為SKIPIF1<0,恒過定點(diǎn)SKIPIF1<0符合題意,綜上所述,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.

20.已知點(diǎn)SKIPIF1<0為雙曲線SKIPIF1<0上一點(diǎn),SKIPIF1<0的左焦點(diǎn)SKIPIF1<0到一條漸近線的距離為SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)不過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若直線PA,PB的斜率和為1,證明:直線SKIPIF1<0過定點(diǎn),并求該定點(diǎn)的坐標(biāo).【解析】(1)設(shè)SKIPIF1<0SKIPIF1<0到漸近線SKIPIF1<0,即SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,結(jié)合SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0在雙曲線SKIPIF1<0上,所以SKIPIF1<0,得SKIPIF1<0,所以雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)聯(lián)立SKIPIF1<0,消去SKIPIF1<0并整理得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)橹本€SKIPIF1<0不過SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0,即SKIPIF1<0過定點(diǎn)SKIPIF1<0.

21.已知雙曲線SKIPIF1<0:SKIPIF1<0實(shí)軸SKIPIF1<0長為4(SKIPIF1<0在SKIPIF1<0的左側(cè)),雙曲線SKIPIF1<0上第一象限內(nèi)的一點(diǎn)SKIPIF1<0到兩漸近線的距離之積為SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)過SKIPIF1<0的直線與雙曲線交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),記直線SKIPIF1<0,SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0,請從下列的結(jié)論中選擇一個正確的結(jié)論,并予以證明.①SKIPIF1<0為定值;②SKIPIF1<0為定值;③SKIPIF1<0為定值【解析】(1)設(shè)SKIPIF1<0是SKIPIF1<0上的一點(diǎn),SKIPIF1<0與SKIPIF1<0是SKIPIF1<0的兩條漸近線,SKIPIF1<0到兩條漸近線的距離之積SKIPIF1<0,依題意,SKIPIF1<0,故SKIPIF1<0,雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0;(2)正確結(jié)論:③SKIPIF1<0為定值.證明如下:由(1)知SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0不與SKIPIF1<0,SKIPIF1<0重合,所以可設(shè)直線SKIPIF1<0:SKIPIF1<0,與SKIPIF1<0聯(lián)立:SKIPIF1<0,消去SKIPIF1<0整理可得:SKIPIF1<0故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0SKIPIF1<0,不是定值,②S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論