版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆昌吉瑪納斯縣第一中學(xué)2025屆高三第六次模擬考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.112.已知點(diǎn)是拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.3.將函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B. C. D.4.已知,滿足約束條件,則的最大值為A. B. C. D.5.如圖所示,三國(guó)時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計(jì),?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1086.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.7.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.8.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.849.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.10.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.411.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.12.設(shè)集合,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,,且,則向量與的夾角的大小為________.14.設(shè)函數(shù),則______.15.已知一個(gè)四面體的每個(gè)頂點(diǎn)都在表面積為的球的表面上,且,,則__________.16.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點(diǎn),,若線段EF上存在一點(diǎn)M,使得,則____________,____________.(本題第1空2分,第2空3分)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.19.(12分)某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷鰝€(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)閭€(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場(chǎng)希望的數(shù)學(xué)期望不超過元,求的最小值.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)若在上單調(diào)遞增,且求c的最大值.21.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。22.(10分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.2、B【解析】
設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.3、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個(gè)選項(xiàng)代入逐一判斷即可.【詳解】解:圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,故選:D【點(diǎn)睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.4、D【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.5、B【解析】
根據(jù)幾何概型的概率公式求出對(duì)應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長(zhǎng)為1,則小直角三角形的邊長(zhǎng)為,
則小正方形的邊長(zhǎng)為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點(diǎn)睛】本題主要考查幾何概型的概率的應(yīng)用,求出對(duì)應(yīng)的面積之比是解決本題的關(guān)鍵.6、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡(jiǎn),然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.7、D【解析】
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.8、D【解析】
利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.10、B【解析】
設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.11、A【解析】
首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,,可知,,同時(shí)易知,,所以面,故即為與面所成角,有,故.故選:A.【點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.12、A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由,解得,進(jìn)而求出,即可得出結(jié)果.【詳解】解:因?yàn)?,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點(diǎn)睛】本題主要考查平面向量的運(yùn)算,平面向量垂直,向量夾角等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】
由自變量所在定義域范圍,代入對(duì)應(yīng)解析式,再由對(duì)數(shù)加減法運(yùn)算法則與對(duì)數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因?yàn)楹瘮?shù),則因?yàn)?,則故故答案為:【點(diǎn)睛】本題考查分段函數(shù)求值,屬于簡(jiǎn)單題.15、【解析】由題意可得,該四面體的四個(gè)頂點(diǎn)位于一個(gè)長(zhǎng)方體的四個(gè)頂點(diǎn)上,設(shè)長(zhǎng)方體的長(zhǎng)寬高為,由題意可得:,據(jù)此可得:,則球的表面積:,結(jié)合解得:.點(diǎn)睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長(zhǎng)等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長(zhǎng)等于球的直徑.16、【解析】
根據(jù)題意,設(shè),則,所以,解得,所以,從而有.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)取中點(diǎn),連接,,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時(shí),常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對(duì)于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為線面角的正弦值.18、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.19、;.【解析】
設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,求出;由題意可知,隨機(jī)變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡(jiǎn)得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,所以;由題意可知,隨機(jī)變量的可能取值為,,,且,,,所以隨機(jī)變量的數(shù)學(xué)期望,,化簡(jiǎn)得,由題意可知,,即,化簡(jiǎn)得,因?yàn)?,解得,即的最小值?【點(diǎn)睛】本題主要考查概率和期望的求法,屬于??碱}.20、(1)見解析(2)2【解析】
(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點(diǎn)問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進(jìn)而求解.【詳解】(1)當(dāng)時(shí),,定義域?yàn)?由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時(shí),;當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時(shí),直線和函數(shù)的圖象有兩個(gè)交點(diǎn),即函數(shù)有兩個(gè)零點(diǎn);當(dāng)或,即或時(shí),直線和函數(shù)的圖象有一個(gè)交點(diǎn),即函數(shù)有一個(gè)零點(diǎn);當(dāng)即時(shí),直線與函數(shù)的象沒有交點(diǎn),即函數(shù)無零點(diǎn).(2)因?yàn)樵谏蠁握{(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時(shí),,故,單調(diào)遞減,不符合題意;③若,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,由,得,設(shè),則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)小動(dòng)物技能大賽第三屆寵物訓(xùn)導(dǎo)技能大賽參考試題庫(kù)(含答案)
- 民營(yíng)企業(yè)黨支部換屆選舉三年任期工作報(bào)告
- 2025民用航空運(yùn)輸行業(yè)的未來:市場(chǎng)與技術(shù)展望
- 戶外廣告合同范本
- 危險(xiǎn)品運(yùn)輸業(yè)務(wù)承包經(jīng)營(yíng)合同范本
- 投資擔(dān)保合同模板
- 綜合授信合同
- 茶青購(gòu)銷合同茶葉定購(gòu)合同
- 人力資源勞務(wù)分包合同書
- 第二章 數(shù)據(jù)結(jié)構(gòu)與算法
- 課題申報(bào)參考:流視角下社區(qū)生活圈的適老化評(píng)價(jià)與空間優(yōu)化研究-以沈陽(yáng)市為例
- 《openEuler操作系統(tǒng)》考試復(fù)習(xí)題庫(kù)(含答案)
- 項(xiàng)目重點(diǎn)難點(diǎn)分析及解決措施
- 挑戰(zhàn)杯-申報(bào)書范本
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)期末測(cè)試卷及答案共5套
- 2024-2025學(xué)年人教版生物八年級(jí)上冊(cè)期末綜合測(cè)試卷
- 2025年九省聯(lián)考新高考 語(yǔ)文試卷(含答案解析)
- 中國(guó)酒文化 酒文化介紹 酒的禮俗 中國(guó)風(fēng)PPT模板
- 山西省原平市高鋁土實(shí)業(yè)有限公司鋁土礦資源開發(fā)利用、地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 電子技術(shù)說課課件
- 探索者三維建筑結(jié)構(gòu)建模設(shè)計(jì)軟件說明書
評(píng)論
0/150
提交評(píng)論