版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建省羅源第二中學高考數(shù)學五模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.2.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切3.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據(jù)所給信息,正確的統(tǒng)計結(jié)論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過4.函數(shù)的圖象大致為()A. B.C. D.5.命題:的否定為A. B.C. D.6.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.7.復(fù)數(shù)的模為().A. B.1 C.2 D.8.已知向量,,若,則()A. B. C. D.9.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.10.已知實數(shù)滿足約束條件,則的最小值是A. B. C.1 D.411.若集合,,則A. B. C. D.12.已知,若則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,則____________.14.已知函數(shù)的部分圖象如圖所示,則的值為____________.15.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.16.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.18.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發(fā)、行進步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達式.19.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.20.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉(zhuǎn)至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)已知,其中.(1)當時,設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.22.(10分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因為在上單調(diào)遞增,且,所以當時,;當時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉(zhuǎn)化思想和運算能力,屬于難題.2、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.3、D【解析】
先列表分析近10年全球風力發(fā)電新增裝機容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.4、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.5、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.6、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.7、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.8、A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎(chǔ)題.9、B【解析】
作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.10、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當直線經(jīng)過點時,z取得最小值,由,解得,所以,所以,故選B.11、C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.12、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運算求解的能力,屬于中檔題,二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)并集的定義計算即可.【詳解】由集合的并集,知.故答案為:【點睛】本題考查集合的并集運算,屬于容易題.14、【解析】
由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.15、【解析】
由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.16、或【解析】
函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負進行討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點的導數(shù)再列一方程,解方程組即可;(2)先對求導數(shù),根據(jù)導數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調(diào)遞減,當時,,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調(diào)遞增,當時,單調(diào)遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數(shù),利用導數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.18、(1),,,(2)【解析】
(1)根據(jù)機器人的進行規(guī)律可確定、、的值;(2)首先根據(jù)機器人行進規(guī)則知機器人沿軸行進步,必須沿軸負方向行進相同的步數(shù),而余下的每一步行進方向都有兩個選擇(向上或向下),由此結(jié)合組合知識確定機器人的每一種走法關(guān)于的表達式,并得到的表達式,然后結(jié)合二項式定理及展開式的通項公式進行求解.【詳解】解:(1),,(2)設(shè)為沿軸正方向走的步數(shù)(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數(shù))總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數(shù),為其中含項的系數(shù)為故.【點睛】本題考查組合數(shù)、二項式定理,考查學生的邏輯推理能力,推理論證能力以及分類討論的思想.19、(Ⅰ)證明見詳解;(Ⅱ).【解析】
(Ⅰ)取中點為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.20、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質(zhì)知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于.因為//,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質(zhì),利用定義求線面角,屬于中檔題.21、(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導,根據(jù)導數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導,再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當時,設(shè)函數(shù),則令,解得當時,,當時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當時,函數(shù)取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當時,在區(qū)間上恒成立,當時,,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工分包合同樣本3篇
- 效果圖設(shè)計合同范本2篇
- 攝影器材運輸合同案例3篇
- 斷橋隔窗合同3篇
- 安全預(yù)案審核與修改服務(wù)合同3篇
- 房屋買賣合同證實函3篇
- 旅游大數(shù)據(jù)分析勞動合同模板3篇
- 安居房施工合同解除權(quán)行使指南3篇
- 房屋買賣定金合同的問題解答3篇
- 文化活動承包合同3篇
- 陸軍第七十五集團軍醫(yī)院招聘筆試真題2023
- 吉林省吉林市(2024年-2025年小學六年級語文)統(tǒng)編版期末考試(上學期)試卷及答案
- 【MOOC】知識圖譜導論-浙江大學 中國大學慕課MOOC答案
- 無人機任務(wù)規(guī)劃
- 音樂行業(yè)在線音樂平臺開發(fā)及運營策略方案
- GB/T 25042-2024膜結(jié)構(gòu)用玻璃纖維膜材料
- AltiumDesigner電路與PCB設(shè)計知到智慧樹期末考試答案題庫2024年秋四川郵電職業(yè)技術(shù)學院
- 化工企業(yè)職業(yè)健康安全和環(huán)境目標、指標分解表
- 企業(yè)新員工師徒結(jié)對方案
- 2023年藥品流通行業(yè)運行統(tǒng)計分析報告
- 現(xiàn)代小說課件教學課件
評論
0/150
提交評論