2025屆常州市實驗初級中學高三下學期聯(lián)合考試數(shù)學試題含解析_第1頁
2025屆常州市實驗初級中學高三下學期聯(lián)合考試數(shù)學試題含解析_第2頁
2025屆常州市實驗初級中學高三下學期聯(lián)合考試數(shù)學試題含解析_第3頁
2025屆常州市實驗初級中學高三下學期聯(lián)合考試數(shù)學試題含解析_第4頁
2025屆常州市實驗初級中學高三下學期聯(lián)合考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆常州市實驗初級中學高三下學期聯(lián)合考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.2.已知向量與的夾角為,,,則()A. B.0 C.0或 D.3.已知數(shù)列中,,(),則等于()A. B. C. D.24.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或5.新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一6.設a,b,c為正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件7.已知是虛數(shù)單位,若,則()A. B.2 C. D.38.設集合,,則()A. B.C. D.9.設函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.10.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1711.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.12.已知橢圓,直線與直線相交于點,且點在橢圓內恒成立,則橢圓的離心率取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側面內的動點,且,則與平面所成角的正切值的最大值為___________.14.從一箱產(chǎn)品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________15.設實數(shù)x,y滿足,則點表示的區(qū)域面積為______.16.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.18.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎者擲各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學期望不超過元,求的最小值.19.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.20.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.21.(12分)一酒企為擴大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內發(fā)酵館,發(fā)酵館內有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結合現(xiàn)有的生產(chǎn)規(guī)模,設定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設計,可使得發(fā)酵館占地面積最小.22.(10分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內單調遞減,求的取值范圍;(2)當時,設直線與函數(shù)的圖象相交于不同的兩點,,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨??;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.2、B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.3、A【解析】

分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

,

故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎題.4、C【解析】

由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.5、C【解析】

通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.6、B【解析】

根據(jù)不等式的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數(shù),當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合不等式的性質是解決本題的關鍵.7、A【解析】

直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎題.8、A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.9、B【解析】

由題意首先確定導函數(shù)的符號,然后結合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.10、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質的應用,屬于基礎題.11、A【解析】

先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.12、A【解析】

先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內列不等式,化簡后求得離心率的取值范圍.【詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點建立空間直角坐標系,設點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結果.【詳解】如圖,以為原點建立空間直角坐標系,設點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內引入?yún)?shù),將最值問題轉化為函數(shù)的最值問題求解,考查了學生的運算求解能力和直觀想象能力.14、0.35【解析】

根據(jù)對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.15、【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.16、【解析】

根據(jù)二項展開式的通項公式即可得結果.【詳解】解:(2x-1)7的展開式通式為:當時,,則.故答案為:【點睛】本題考查求二項展開式指定項的系數(shù),是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.18、;.【解析】

設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.19、(1)見解析;(2)【解析】

(1)取的中點,結合三角形中位線和長度關系,為平行四邊形,進而得到,根據(jù)線面平行判定定理可證得結論;(2)以,,為,,軸建立空間直角坐標系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點,連結,因為為中點,,,所以,,∴為平行四邊形,所以,又因為,所以;(2)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標系,則,,,,,,易知面的法向量為設面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點睛】本題考查立體幾何中直線與平面平行關系的證明、空間向量法求解二面角,正確求解法向量是解題的關鍵,屬于中檔題.20、(1);(2)4【解析】

(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設,,在中,由正弦定理得,,∴,∴,∵,∴∴.【點睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.21、(1)(2)當時,,米時,發(fā)酵館的占地面積最小;當時,時,發(fā)酵館的占地面積最?。划敃r,米時,發(fā)酵館的占地面積最小.【解析】

(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數(shù)分類討論即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論