版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省鄱陽縣第二中學高三一診考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列滿足,(),則數列的通項公式()A. B. C. D.2.已知是定義在上的奇函數,當時,,則()A. B.2 C.3 D.3.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-34.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.645.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.6.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c7.設等差數列的前項和為,若,則()A.10 B.9 C.8 D.78.執(zhí)行程序框圖,則輸出的數值為()A. B. C. D.9.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.010.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.311.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.12.已知,則的值構成的集合是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.14.已知實數a,b,c滿足,則的最小值是______.15.實數滿足,則的最大值為_____.16.已知i為虛數單位,復數,則=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求的單調區(qū)間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.18.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.19.(12分)已知函數與的圖象關于直線對稱.(為自然對數的底數)(1)若的圖象在點處的切線經過點,求的值;(2)若不等式恒成立,求正整數的最小值.20.(12分)設,(1)求的單調區(qū)間;(2)設恒成立,求實數的取值范圍.21.(12分)已知函數,.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.22.(10分)已知都是各項不為零的數列,且滿足其中是數列的前項和,是公差為的等差數列.(1)若數列是常數列,,,求數列的通項公式;(2)若是不為零的常數),求證:數列是等差數列;(3)若(為常數,),.求證:對任意的恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.2、A【解析】
由奇函數定義求出和.【詳解】因為是定義在上的奇函數,.又當時,,.故選:A.【點睛】本題考查函數的奇偶性,掌握奇函數的定義是解題關鍵.3、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據數形結合的方法求解問題,即把y+1x-24、B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。5、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.6、A【解析】
利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.7、B【解析】
根據題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數列的求和,意在考查學生的計算能力.8、C【解析】
由題知:該程序框圖是利用循環(huán)結構計算并輸出變量的值,計算程序框圖的運行結果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環(huán)結構,屬于簡單題.9、B【解析】
先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點睛】本題考查向量的幾何意義,考查投影公式的應用,是基礎題.10、B【解析】
設直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數,即可求得結果.【詳解】設,(,).易知直線l的斜率存在且不為0,設為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關系,考查韋達定理及向量的坐標之間的關系,考查計算能力,屬于中檔題.11、A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.12、C【解析】
對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據三棱錐的幾何性質,求出外接球的半徑,結合向量的運算,將問題轉化為求球體表面一點到外心距離最大的問題,即可求得結果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設線段的中點為,故可得,故當取得最大值時,取得最大值.而當在同一個大圓上,且,點與線段在球心的異側時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質,幾何體的外接球問題,涉及向量的線性運算以及數量積運算,屬綜合性困難題.14、【解析】
先分離出,應用基本不等式轉化為關于c的二次函數,進而求出最小值.【詳解】解:若取最小值,則異號,,根據題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數配方求最值,屬于中檔題.15、.【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數的最優(yōu)解問題.線性目標函數的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.16、【解析】
先把復數進行化簡,然后利用求模公式可得結果.【詳解】.故答案為:.【點睛】本題主要考查復數模的求解,利用復數的運算把復數化為的形式是求解的關鍵,側重考查數學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調減區(qū)間為,單調增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對函數求導后,利用導數和單調性的關系,可求得函數的單調區(qū)間.(2)構造函數,利用導數求得函數在上遞減,且,則,故原不等式成立.(3)同(2)構造函數,對分成三類,討論函數的單調性、極值和最值,由此求得的取值范圍.試題解析:(1),當時,.解得.當時,解得.所以單調減區(qū)間為,單調增區(qū)間為.(2)設,當時,由題意,當時,恒成立.,∴當時,恒成立,單調遞減.又,∴當時,恒成立,即.∴對于,恒成立.(3)因為.由(2)知,當時,恒成立,即對于,,不存在滿足條件的;當時,對于,,此時.∴,即恒成立,不存在滿足條件的;當時,令,可知與符號相同,當時,,,單調遞減.∴當時,,即恒成立.綜上,的取值范圍為.點睛:本題主要考查導數和單調區(qū)間,導數與不等式的證明,導數與恒成立問題的求解方法.第一問求函數的單調區(qū)間,這是導數問題的基本題型,也是基本功,先求定義域,然后求導,要注意通分和因式分解.二、三兩問一個是恒成立問題,一個是存在性問題,要注意取值是最大值還是最小值.18、(1)見解析(2)見解析【解析】
(1)連結AC交BD于點O,連結OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結AC交BD于點O,連結OE因為四邊形ABCD為平行四邊形∴O為AC中點,又E為PC中點,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點所以PC⊥DE因為平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點睛】本題主要考查空間位置關系的證明,線面平行一般轉化為線線平行來證明,直線與直線垂直通常利用線面垂直來進行證明,側重考查邏輯推理的核心素養(yǎng).19、(1)e;(2)2.【解析】
(1)根據反函數的性質,得出,再利用導數的幾何意義,求出曲線在點處的切線為,構造函數,利用導數求出單調性,即可得出的值;(2)設,求導,求出的單調性,從而得出最大值為,結合恒成立的性質,得出正整數的最小值.【詳解】(1)根據題意,與的圖象關于直線對稱,所以函數的圖象與互為反函數,則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數,當時,,當時,,且,當時,單調遞增,而,故存在唯一的實數根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數在是增函數,在是減函數.故函數的最大值為.令,因為,,又因為在是減函數.所以當時,.所以正整數的最小值為2.【點睛】本題考查導數的幾何意義和利用導數解決恒成立問題,涉及到單調性、構造函數法等,考查函數思想和計算能力.20、(1)單調遞增區(qū)間為,單調遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調遞增區(qū)間為,單調遞減區(qū)間為.(2),,,設的根為,即有可得,,當時,,遞減,當時,,遞增.,所以,①當;②當時,設,遞增,,所以.綜上,.【點睛】本題考查了利用導數研究函數單調性以及函數恒成立問題,這里要強調一點,處理恒成立問題時,通常是構造函數,將問題轉化為函數的極值或最值來處理.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB51T 1768.2-2018 公共用紡織產品通 用技術要求 第2部分 非醫(yī)療場所用
- 如何快速適應和融入新的工作環(huán)境
- DB51T 1558-2012 補充耕地質量驗收評價技術規(guī)程
- 初中閱讀理解技巧與能力培養(yǎng)
- DB51T 1127-2010 華鯪養(yǎng)殖技術規(guī)范 配合飼料
- DB51T 1058-2010 農產品質量監(jiān)督檢驗機構基本要求
- 廢尼龍投資項目可行性分析報告
- 聚丙烯樹脂項目立項申請報告
- 新建工業(yè)高壓電器項目立項申請報告
- 2024-2030年氣動定扭矩彎角扳手公司技術改造及擴產項目可行性研究報告
- 過敏性紫癜-教學課件
- GB/T 18344-2016汽車維護、檢測、診斷技術規(guī)范
- 神態(tài)描寫課件
- 醫(yī)惠內鏡消毒質量追溯系統(tǒng)
- 如何提高基層干部群眾工作能力課件
- 風險分級管控與隱患排查治理雙重預防體系建設資料匯編
- 2022年讀者出版集團有限公司招聘筆試試題及答案解析
- NB∕T 33009-2021 電動汽車充換電設施建設技術導則
- 大學《傳播學概論》試卷及答案
- 工程設計費收費標準
- -堅定目標贏在執(zhí)行 主題班會課件
評論
0/150
提交評論