版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省荊荊襄宜四地七??荚嚶?lián)盟2025屆高三下第一次測試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則2.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.已知函數(shù),,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.4.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.5.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.6.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.7.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁8.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.9.已知,,,則()A. B. C. D.10.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺11.已知雙曲線的一個焦點為,點是的一條漸近線上關(guān)于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.12.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.642二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知圓及點,設(shè)點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.14.已知,,且,則的最小值是______.15.展開式的第5項的系數(shù)為_____.16.在邊長為2的正三角形中,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.18.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點,若,求的值.19.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.20.(12分)某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.21.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.22.(10分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個選項得到結(jié)果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.2、A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.3、B【解析】
由題意可將方程轉(zhuǎn)化為,令,,進而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因為,當時,,所以在,上單調(diào)遞增,且時,.當時,,在上單調(diào)遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.4、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關(guān)系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.5、A【解析】
執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.6、C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.7、A【解析】
可采用假設(shè)法進行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.8、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.9、B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.10、A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.11、B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計算能力,屬于中檔題.12、A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個:(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由角平分線成比例定理推理可得,進而設(shè)點表示向量構(gòu)建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設(shè)點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關(guān)的距離的最值問題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.14、8【解析】
由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.【點睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.15、70【解析】
根據(jù)二項式定理的通項公式,可得結(jié)果.【詳解】由題可知:第5項為故第5項的的系數(shù)為故答案為:70.【點睛】本題考查的是二項式定理,屬基礎(chǔ)題。16、【解析】
建立直角坐標系,依題意可求得,而,,,故可得,且,由此構(gòu)造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設(shè),,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設(shè),,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點的直線方程為,則原點到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設(shè)其直線方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.18、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設(shè),由點在棱上,可設(shè),即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設(shè),,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內(nèi),所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設(shè),則,,,,因為在棱上,可設(shè),所以,設(shè)平面的法向量為,因為,所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當時,取最大值.(3)設(shè),則有,得,設(shè),那么,所以,所以.因為,,所以.又因為,所以,,設(shè)平面的法向量為,則,即,,可得,即因為在平面內(nèi),所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.19、詳見解析【解析】
選擇①,利用正弦定理求得,利用余弦定理求得,再計算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因為,所以,即;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.【點睛】本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.20、(1)(2)【解析】
(1)根據(jù)題意即可寫出該批次產(chǎn)品長度誤差的絕對值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標準長度的概率為0.4,即可求出隨機抽取2件產(chǎn)品,都不是標準長度產(chǎn)品的概率,由對立事件的概率公式即可得到隨機抽取2件產(chǎn)品,至少有1件是標準長度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當不符合要求時,設(shè)生產(chǎn)一件產(chǎn)品為標準長度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計為.(2)由(1)可知任取一件產(chǎn)品是標準長度的概率為0.4,設(shè)至少有1件是標準長度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標準長度的概率為,由題意,又,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國大中型拖拉機市場發(fā)展前景調(diào)研及投資戰(zhàn)略分析報告
- 2024-2030年中國壓力繼電器行業(yè)競爭動態(tài)與投資效益預(yù)測報告
- 2024年版股份有限公司并購協(xié)議標準格式版B版
- 2024年某教育機構(gòu)與某科技公司關(guān)于在線教育平臺合作的合同
- 梅河口康美職業(yè)技術(shù)學(xué)院《材料工程基礎(chǔ)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年特許經(jīng)營合同涉及連鎖餐飲業(yè)
- 2024年度施工現(xiàn)場安全生產(chǎn)設(shè)施檢測與維修協(xié)議3篇
- 2024年塔吊設(shè)備維護保養(yǎng)與操作人員培訓(xùn)勞務(wù)分包合同2篇
- 2025年道路貨運運輸駕駛員從業(yè)資格證模擬考試
- 2025年西寧貨運從業(yè)資格證模擬考試題及答案解析大全
- 抖音美食賬號腳本范文
- 頸部疾病病人護理
- 唐山港總體規(guī)劃報告
- 鄭州市中原區(qū)2022-2023學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題
- 【A電器公司存貨管理存在的問題及優(yōu)化建議探析3400字(論文)】
- 基層民兵整組調(diào)研報告總結(jié)
- 某智慧口岸建設(shè)需求
- 汽車技工的汽車維修技能培訓(xùn)
- 綜合英語智慧樹知到期末考試答案章節(jié)答案2024年喀什大學(xué)
- 口腔科醫(yī)療安全隱患
- (正式版)JCT 2769-2024 混凝土用鐵尾礦碎石
評論
0/150
提交評論