專題02 二次根式【考點精講】(解析版)_第1頁
專題02 二次根式【考點精講】(解析版)_第2頁
專題02 二次根式【考點精講】(解析版)_第3頁
專題02 二次根式【考點精講】(解析版)_第4頁
專題02 二次根式【考點精講】(解析版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

考點02二次根式一、二次根式及相關(guān)概念1.二次根式:形如(a≥0)的式子叫做二次根式.2.最簡二次根式:最簡二次根式必須同時滿足以下條件:(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;(2)數(shù)被開方數(shù)不含分母,被開方數(shù)不含能開得盡方的因或因式.3.同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式稱為同類二次根式.如eq\r(8)與eq\r(2)是同類二次根式.同類二次根式可以合并,合并同類二次根式與合并同類項類似.二、二次根式的性質(zhì)(1)()2=a(a≥0).(2)=eq\b\lc\|\rc\|(\a\vs4\al\co1(a))=eq\b\lc\{(\a\vs4\al\co1(a(a≥0),,-a(a<0).))(3)=·(a≥0,b≥0).(4)(a≥0,b>0).(5)雙重非負性:二次根式?eq\b\lc\{(\a\vs4\al\co1(被開方數(shù)a≥0,\r(a)≥0))三、二次根式的運算1.二次根式的加減:先將各二次根式化為最簡二次根式,然后合并同類二次根式.2.二次根式的乘除(1)二次根式的乘法:·=eq\r(ab)(a≥0,b≥0);(2)二次根式的除法:=eq\r(\f(a,b))(a≥0,b>0);(3)二次根式的運算結(jié)果一定要化成最簡二次根式或整式.3.二次根式的開方:=eq\b\lc\{(\a\vs4\al\co1(a(a≥0),,-a(a<0).))4.二次根式的混合運算在進行二次根式的混合運算時,應(yīng)注意以下幾點:(1)二次根式的混合運算順序與實數(shù)的運算順序相同,即先乘方,再乘除,最后算加減,有括號要先去括號;(2)加法的交換律、結(jié)合律,乘法的交換律、結(jié)合律和對加法的分配律在二次根式的混合運算中仍然適用;(3)多項式的乘法公式仍然適合于二次根式的運算;(4)二次根式混合運算的結(jié)果要化為最簡二次根式.【考點1】二次根式的概念【例1】(2022·江蘇連云港)函數(shù)中自變量的取值范圍是(

)A. B. C. D.【答案】A【分析】根據(jù)二次根式有意義的條件列出不等式,即可求解.【解析】解:∵,∴.故選A.【例2】下列二次根式中,與是同類二次根式的是()A. B. C. D.【答案】C【分析】根據(jù)同類二次根式的定義,先化簡,再判斷.【解析】A.與的被開方數(shù)不相同,故不是同類二次根式;B.,與不是同類二次根式;C.,與被開方數(shù)相同,故是同類二次根式;D.,與被開方數(shù)不同,故不是同類二次根式.故選:C.【例3】下列各式是最簡二次根式的是()A. B. C. D.【答案】A【分析】根據(jù)最簡二次根式的定義即可求出答案.【解析】解:A、是最簡二次根式,故選項正確;B、=,不是最簡二次根式,故選項錯誤;C、,不是最簡二次根式,故選項錯誤;D、,不是最簡二次根式,故選項錯誤;故選A.牢記二次根式相關(guān)概念:1.二次根式:式子叫做二次根式.注意被開方數(shù)a只能是非負數(shù).2.最簡二次根式:被開方數(shù)不含分母,被開方數(shù)不含能開得盡方的因數(shù)或因式的二次根式,叫做最簡二次根式.3.同類二次根式:化成最簡二次根式后,被開方數(shù)相同的二次根式,叫做同類二次根式.1.(2022·湖南衡陽)如果二次根式有意義,那么實數(shù)的取值范圍是(

)A. B. C. D.【答案】B【分析】根據(jù)二次根式中的被開方數(shù)是非負數(shù)求解可得.【詳解】根據(jù)題意知≥0,解得,故選:B.2.(2022·廣西桂林)化簡的結(jié)果是(

)A.2 B.3 C.2 D.2【答案】A【分析】將被開方數(shù)12寫成平方數(shù)4與3的乘積,再將4開出來為2,易知化簡結(jié)果為2.【詳解】解:=2,故選:A.3.下列各式中與是同類二次根式的是()A. B. C. D.【答案】C【分析】根據(jù)同類二次根式的概念逐一判斷即可.【詳解】解:A、和是最簡二次根式,與的被開方數(shù)不同,故A選項錯誤;B、,3不是二次根式,故B選項錯誤;C、,與的被開方數(shù)相同,故C選項正確;D、,與的被開方數(shù)不同,故D選項錯誤;故選:C.4.(2022·云南)若代數(shù)式有意義,則實數(shù)x的取值范圍是______.【答案】x≥﹣1【分析】根據(jù)二次根式有意義的條件可得:x+1≥0,即可求得.【詳解】解:∵代數(shù)式有意義∴x+1≥0,∴x≥﹣1.故答案為:x≥﹣1.5.(2022·四川南充)若為整數(shù),x為正整數(shù),則x的值是_______________.【答案】4或7或8【分析】根據(jù)根號下的數(shù)大于等于0和x為正整數(shù),可得x可以取1、2、3、4、5、6、7、8,再根據(jù)為整數(shù)即可得的值.【詳解】解:∵∴∵為正整數(shù)∴可以為1、2、3、4、5、6、7、8∵為整數(shù)∴為4或7或8故答案為:4或7或8.【考點2】二次根式的性質(zhì)【例4】(2021·湖南婁底市)是某三角形三邊的長,則等于()A. B. C.10 D.4【分析】先根據(jù)三角形三邊的關(guān)系求出的取值范圍,再把二次根式進行化解,得出結(jié)論.【詳解】解:是三角形的三邊,,解得:,,故選:D.1.(2022·四川涼山)化簡:=(

)A.±2 B.-2 C.4 D.2【答案】D【分析】先計算(-2)2=4,再求算術(shù)平方根即可.【詳解】解:,故選:D.2.(2022·河北·一模)已知,則代數(shù)式的值為(

)A. B. C. D.【答案】A【分析】根據(jù)二次根式的非負性可知,從而得到,代值求解即可.【詳解】解:對于,,,解得,則,,故選:A.3.(2022·四川遂寧)實數(shù)a,b在數(shù)軸上的位置如圖所示,化簡______.【答案】2【分析】利用數(shù)軸可得出,進而化簡求出答案.【詳解】解:由數(shù)軸可得:,則∴====2.故答案為:2.【考點3】二次根式的運算【例5】(2022·山東青島)計算的結(jié)果是(

)A. B.1 C. D.3【答案】B【分析】把括號內(nèi)的每一項分別乘以再合并即可.【詳解】解:故選:B.【例6】(2022·四川宜賓)《數(shù)學(xué)九章》是中國南宋時期杰出數(shù)學(xué)家秦九韶的著作,書中提出了已知三角形三邊a、b、c求面積的公式,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實.一為從隅,開平方得積.”若把以上這段文字寫成公式,即為.現(xiàn)有周長為18的三角形的三邊滿足,則用以上給出的公式求得這個三角形的面積為______.【答案】【分析】根據(jù)周長為18的三角形的三邊滿足,求得,代入公式即可求解.【詳解】解:∵周長為18的三角形的三邊滿足,設(shè)∴解得故答案為:【例7】計算下列各題(1);(2)(3);(4)【答案】(1);(2);(3);(4)【分析】(1)先化為最簡二次根式,再計算加減法;(2)先算乘方和開方,去絕對值,再算加減法;(3)利用完全平方公式和平方差公式展開,再合并計算;(4)先化為最簡二次根式,再算加減法,然后計算乘除,最后合并.【詳解】解:(1)==;(2)==;(3)==;(4)===二次根式運算的注意事項1.在進行二次根式的運算時,一般先把二次根式化為最簡二次根式,再利用二次根式的乘除法法則進行乘除運算,同類二次根式之間可以進行加減運算(類似于合并同類項).2.運算結(jié)果要化成最簡形式.3.在二次根式的運算中,要注意與次的區(qū)別.①取值不同:前者的a為任意實數(shù),后者的a為非負數(shù);②化簡結(jié)果不同:=|a|,=a.1.(2022·黑龍江哈爾濱)計算的結(jié)果是___________.【答案】【分析】先化簡二次根式,再合并同類二次根式即可.【詳解】解:==,故答案為:.2.(2022·天津)計算的結(jié)果等于___________.【答案】18【分析】根據(jù)平方差公式即可求解.【詳解】解:,故答案為:18.3.(2022·湖南衡陽)計算:=_____.【答案】【分析】根據(jù)二次根式的乘法法則計算即可.【詳解】.故答案為:.4.(2022·山西)計算的結(jié)果是________.【答案】3【分析】直接利用二次根式的乘法法則計算得出答案.【詳解】解:原式===3.故答案為:3.5.(2022·重慶)估計的值應(yīng)在(

)A.10和11之間 B.9和10之間 C.8和9之間 D.7和8之間【答案】B【分析】先化簡,利用,從而判定即可.【詳解】,∵,∴,∴,故選:B.6.列各式不成立的是()A. B.C. D.【答案】C【分析】根據(jù)二次根式的性質(zhì)、二次根式的加法法則、除法法則計算,判斷即可.【詳解】,A選項成立,不符合題意;,B選項成立,不符合題意;,C選項不成立,符合題意;,D選項成立,不符合題意;故選C.7.(2022·甘肅武威)計算:.【答案】【分析】根據(jù)二次根式的混合運算進行計算即可求解.【詳解】解:原式.8.(2022·貴州遵義)(1)計算:(2)先化簡,再求值,其中.【答案】(1);(2),【分析】(1)根據(jù)負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值,化簡絕對值進行計算即可求解;(2)先根據(jù)分式的加減計算括號內(nèi)的,同時將除法轉(zhuǎn)化為乘法,再根據(jù)分式的性質(zhì)化簡,最后將字母的值代入求解.【詳解】(1)解:原式=;(2)解:原式=;當(dāng)時,原式.【考點4】二次根式綜合運用【例8】(2022·湖北·鄂州市教學(xué)研究室一模)若三個實數(shù)x,y,z滿足,且,則有:(結(jié)論不需要證明)例如:根據(jù)以上閱讀,請解決下列問題:【基礎(chǔ)訓(xùn)練】(1)求的值;【能力提升】(2)設(shè),求S的整數(shù)部分.【拓展升華】(3)已知,其中,且.當(dāng)取得最小值時,求x的取值范圍.【答案】(1)(2)S的整數(shù)部分2019(3)代數(shù)式取得最小值時,x的取值范圍是【分析】(1)根據(jù)范例中提供的計算方法進行計算即可;(2))利用題目的僅能式將其進行化簡,再確定整數(shù)部分;(3)將原式化簡為,再根據(jù)||取最小值時,確定x的取值范圍.(1)(2),∴S的整數(shù)部分2019;(3)由已知得:,且,,∵,∴原式,當(dāng)時,;當(dāng)時,;∴當(dāng),即時,取得最小值為2,∴代數(shù)式取得最小值時,x的取值范圍是:.1.閱讀材料:黑白雙雄、縱橫江湖;雙劍合璧、天下無敵.這是武俠小說中的常見描述,其意是指兩個人合在一起,取長補短,威力無比.在二次根式中也有這種相輔相成的“對子”.如:,,它們的積不含根號,我們說這兩個二次根式互為有理化因式,其中一個是另一個的有理化因式,于是,二次根式除法可以這樣理解:如:,.像這樣,通過分子、分母同乘以一個式子把分母中的根號化去或把根號中的分母化去,叫做分母有理化.解決問題:(1)的有理化因式可以是___________,分母有理化得___________.(2)計算:①已知,,求的值;②.【答案】(1),;(2)①14;②【分析】(1)找出各式的分母有理化因式即可;(2)①將x與y分母有理化后代入原式計算即可得到結(jié)果.②原式各項分母有理化,合并即可得到結(jié)果.【詳解】解:(1)的有理化因式可以是,,故答案為:,;(2)①當(dāng),時,.②原式.2.閱讀下面問題:==-1;1/+=1×(-)/(+)/(-)=-;1/+=1×(-)/(+)/(-)=-;試求:(1)=_

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論