茂名市2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第1頁
茂名市2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第2頁
茂名市2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第3頁
茂名市2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第4頁
茂名市2025屆高考考前提分數(shù)學(xué)仿真卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

茂名市2025屆高考考前提分數(shù)學(xué)仿真卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.2.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()3.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.4.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20175.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件6.已知,若,則等于()A.3 B.4 C.5 D.67.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.58.設(shè)函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.39.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.10.如圖,中,點D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得11.若集合,,則A. B. C. D.12.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)則______.14.已知為偶函數(shù),當(dāng)時,,則__________.15.《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.16.已知雙曲線的一條漸近線經(jīng)過點,則該雙曲線的離心率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.18.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.19.(12分)已知函數(shù)和的圖象關(guān)于原點對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.21.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.22.(10分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.2、B【解析】

如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.3、D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.4、D【解析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.5、D【解析】

結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項.【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.6、C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關(guān)向量的問題,涉及到的知識點有向量的減法坐標(biāo)運算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.7、D【解析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.8、B【解析】

畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個或三個(時有三個,時有兩個),所以關(guān)于的方程只能有一個根(若有兩個根,則關(guān)于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,屬于??碱}型.9、C【解析】

由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對應(yīng)的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對應(yīng)的點為,復(fù)數(shù)對應(yīng)的點為,所以,其中,故選C【點睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對應(yīng)點的距離求值即可,屬于基礎(chǔ)題型.10、A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.11、C【解析】

解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.12、B【解析】

構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點睛】本題考查對數(shù)、指數(shù)的運算性質(zhì),分段函數(shù)求值關(guān)鍵是“對號入座”,屬于容易題.14、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點睛】本題考查函數(shù)的奇偶性,對數(shù)函數(shù)的運算,考查運算求解能力15、【解析】

由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時考查了空間想象能力、計算能力和邏輯推理能力,屬于中檔題.16、【解析】

根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經(jīng)過點,即,則,由此可得.故答案為:.【點睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進而求離心率,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1),①當(dāng)時,,②兩式相減即得數(shù)列的通項公式;(2)先求出,再利用裂項相消法求和證明.【詳解】(1)解:,①當(dāng)時,.當(dāng)時,,②由①-②,得,因為符合上式,所以.(2)證明:因為,所以.【點睛】本題主要考查數(shù)列通項的求法,考查數(shù)列求和,意在考查學(xué)生對這些知識的理解掌握水平.18、(1)(2)【解析】

(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.19、(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點對稱可得的表達式,再去掉絕對值即可解不等式;(2)對,不等式成立等價于,去絕對值得不等式組,即可求得實數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關(guān)于原點對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.20、(1);(2)證明見解析.【解析】

(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對任意兩個不等的正實數(shù),都有恒成立.則在上單調(diào)遞減,因為,當(dāng)時,在內(nèi)單調(diào)遞減.,當(dāng)時,由,有,此時,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計算能力.21、(1)最小值為,此時;(2)見解析【解析】

(1)由已知得,法一:,,根據(jù)二次函數(shù)的最值可求得;法二:運用基本不等式構(gòu)造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【點睛】本題考查運用基本不等式,柯西不等式,絕對值不等式進行不等式的證明和求解函數(shù)的最值,屬于中檔題.22、(1)見解析(2)見解析【解析】

(1)連結(jié)AC交BD于點O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點O,連結(jié)OE因為四邊形ABCD為平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論