




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆北京市高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿(mǎn)足,則的最大值為()A. B. C. D.62.設(shè)復(fù)數(shù)滿(mǎn)足(為虛數(shù)單位),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知實(shí)數(shù)x,y滿(mǎn)足,則的最小值等于()A. B. C. D.4.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.5.若函數(shù)在時(shí)取得極值,則()A. B. C. D.6.在中,為中點(diǎn),且,若,則()A. B. C. D.7.已知雙曲線(xiàn)C:1(a>0,b>0)的焦距為8,一條漸近線(xiàn)方程為,則C為()A. B.C. D.8.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.9.已知向量,滿(mǎn)足,在上投影為,則的最小值為()A. B. C. D.10.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.11.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)點(diǎn)的直線(xiàn)與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線(xiàn)段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.12.連接雙曲線(xiàn)及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線(xiàn)的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是函數(shù)的極大值點(diǎn),則的取值范圍是____________.14.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線(xiàn)y=f(x)15.如圖是九位評(píng)委打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均分為_(kāi)______.16.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓,過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線(xiàn)的方程;(2)設(shè)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明:直線(xiàn)過(guò)軸上的定點(diǎn).18.(12分)如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點(diǎn),AC,BD交于點(diǎn)O.(1)求證:OE∥平面PBC;(2)求三棱錐E﹣PBD的體積.19.(12分)已知中,內(nèi)角所對(duì)邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.20.(12分)已知是拋物線(xiàn):的焦點(diǎn),點(diǎn)在上,到軸的距離比小1.(1)求的方程;(2)設(shè)直線(xiàn)與交于另一點(diǎn),為的中點(diǎn),點(diǎn)在軸上,.若,求直線(xiàn)的斜率.21.(12分)2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過(guò)程中,居民生活垃圾分類(lèi)逐漸形成意識(shí).有關(guān)部門(mén)為宣傳垃圾分類(lèi)知識(shí),面向該市市民進(jìn)行了一次“垃圾分類(lèi)知識(shí)"的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過(guò)抽樣,得到參與問(wèn)卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門(mén)為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:(i)得分不低于可獲贈(zèng)2次隨機(jī)話(huà)費(fèi),得分低于則只有1次:(ii)每次贈(zèng)送的隨機(jī)話(huà)費(fèi)和對(duì)應(yīng)概率如下:贈(zèng)送話(huà)費(fèi)(單位:元)1020概率現(xiàn)有一位市民要參加此次問(wèn)卷調(diào)查,記X(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話(huà)費(fèi),求X的分布列.附:,若,則,.22.(10分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿(mǎn)足的最小正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計(jì)算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來(lái)解決.2、A【解析】
由復(fù)數(shù)的除法運(yùn)算可整理得到,由此得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),從而確定所處象限.【詳解】由得:,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在象限的求解,涉及到復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.3、D【解析】
設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿(mǎn)足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類(lèi)討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿(mǎn)足題意;時(shí),顯然??=??(??)與??=4|??|沒(méi)有交點(diǎn),故不滿(mǎn)足題意;時(shí),顯然??=??(??)與??=4|??|也沒(méi)有交點(diǎn),故不滿(mǎn)足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿(mǎn)足題意.綜上所述,要滿(mǎn)足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.5、D【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)椋?,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問(wèn)題,屬于??碱}型.6、B【解析】
選取向量,為基底,由向量線(xiàn)性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線(xiàn)性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.7、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線(xiàn)C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.8、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)復(fù)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.9、B【解析】
根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.10、C【解析】
由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線(xiàn)定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.11、D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線(xiàn)的性質(zhì):切線(xiàn)長(zhǎng)相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點(diǎn)睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線(xiàn)的性質(zhì),考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.12、D【解析】
先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線(xiàn)與互為共軛雙曲線(xiàn),四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線(xiàn)形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線(xiàn)的離心率的問(wèn)題,涉及到的知識(shí)點(diǎn)有共軛雙曲線(xiàn)的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線(xiàn)的離心率,屬于簡(jiǎn)單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴在上單調(diào)遞增,時(shí),,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿(mǎn)足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得.14、y=2x【解析】試題分析:當(dāng)x>0時(shí),-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識(shí)拓展】本題題型可歸納為“已知當(dāng)x>0時(shí),函數(shù)y=f(x),則當(dāng)x<0時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時(shí),函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).15、1【解析】
寫(xiě)出莖葉圖對(duì)應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個(gè)數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個(gè)數(shù),平均分為,故答案為1.【點(diǎn)睛】本題考查莖葉圖及平均數(shù)的計(jì)算,屬于基礎(chǔ)題.16、【解析】
根據(jù)題意,畫(huà)出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線(xiàn)段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫?,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線(xiàn)面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2)見(jiàn)解析【解析】
(1)由已知條件利用點(diǎn)斜式設(shè)出直線(xiàn)的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線(xiàn)的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線(xiàn)的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線(xiàn)的方程,化簡(jiǎn)可得結(jié)果.【詳解】(1)由條件可知直線(xiàn)的斜率存在,則可設(shè)直線(xiàn)的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿(mǎn)足直線(xiàn)與橢圓相交,故所求直線(xiàn)方程為或.(也可聯(lián)立直線(xiàn)與橢圓方程,由驗(yàn)證)(2)設(shè),則,直線(xiàn)的方程為.由得,由,解得,,當(dāng)時(shí),,故直線(xiàn)恒過(guò)定點(diǎn).【點(diǎn)睛】此題考查的是直線(xiàn)與橢圓的位置關(guān)系中的過(guò)定點(diǎn)問(wèn)題,計(jì)算過(guò)程較復(fù)雜,屬于難題.18、(1)證明見(jiàn)解析(2)【解析】
(1)連接OE,利用三角形中位線(xiàn)定理得到OE∥PC,即可證出OE∥平面PBC;(2)由E是PA的中點(diǎn),,求出S△ABD,即可求解.【詳解】(1)證明:如圖所示:∵點(diǎn)O,E分別是AC,PA的中點(diǎn),∴OE是△PAC的中位線(xiàn),∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD為菱形,∠BAD=60°,∴S△ABD,∴三棱錐E﹣PBD的體積.【點(diǎn)睛】本題考查空間線(xiàn)、面位置關(guān)系,證明直線(xiàn)與平面平行以及求三棱錐的體積,注意等體積法的應(yīng)用,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.19、(1);(2).【解析】
(1)由正弦定理直接可求,然后運(yùn)用兩角和的正弦公式算出;(2)化簡(jiǎn),由余弦定理得,利用基本不等式求出,確定角范圍,進(jìn)而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,基本不等式的應(yīng)用,三角函數(shù)的值域等,考查了學(xué)生運(yùn)算求解能力.20、(1)(2)【解析】
(1)由拋物線(xiàn)定義可知,解得,故拋物線(xiàn)的方程為;(2)設(shè)直線(xiàn):,聯(lián)立,利用韋達(dá)定理算出的中點(diǎn),又,所以直線(xiàn)的方程為,求出,利用求解即可.【詳解】(1)設(shè)的準(zhǔn)線(xiàn)為,過(guò)作于,則由拋物線(xiàn)定義,得,因?yàn)榈降木嚯x比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設(shè)直線(xiàn)方程為,由消去,得,設(shè),,則,所以,又因?yàn)闉榈闹悬c(diǎn),點(diǎn)的坐標(biāo)為,直線(xiàn)的方程為,令,得,點(diǎn)的坐標(biāo)為,所以,解得,所以直線(xiàn)的斜率為.【點(diǎn)睛】本題主要考查拋物線(xiàn)的定義,直線(xiàn)與拋物線(xiàn)的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的運(yùn)算求解能力.涉及拋物線(xiàn)的弦的中點(diǎn),斜率問(wèn)題時(shí),可采用韋達(dá)定理或“點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年甜玉米行業(yè)市場(chǎng)發(fā)展分析及前景趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025-2030年汽車(chē)自動(dòng)化行業(yè)市場(chǎng)深度分析及競(jìng)爭(zhēng)格局與投資戰(zhàn)略研究報(bào)告
- 2025-2030年有機(jī)谷物飲料產(chǎn)業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)與投資研究報(bào)告
- 2025-2030年折疊自行車(chē)市場(chǎng)前景分析及投資策略與風(fēng)險(xiǎn)管理研究報(bào)告
- 2025-2030年工程咨詢(xún)產(chǎn)業(yè)市場(chǎng)深度分析及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025-2030年家私行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年嬰兒濕巾行業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)前景預(yù)測(cè)報(bào)告
- 2025-2030年品牌設(shè)計(jì)行業(yè)市場(chǎng)深度調(diào)研及前景趨勢(shì)與投資研究報(bào)告
- 2025-2030年農(nóng)業(yè)投資產(chǎn)業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025年經(jīng)濟(jì)法復(fù)習(xí)反饋交流試題及答案
- 《excel學(xué)習(xí)講義》課件
- 中南大學(xué)基礎(chǔ)工程專(zhuān)業(yè)課程設(shè)計(jì)
- 《融資融券交易技巧》課件
- 盈建科軟件課程設(shè)計(jì)
- 低空經(jīng)濟(jì)專(zhuān)業(yè)的課程體系與人才培養(yǎng)目標(biāo)
- 臨床試驗(yàn)違背方案
- 水土保持技術(shù)基礎(chǔ)知識(shí)單選題100道及答案解析
- DB32T 4919-202412345政務(wù)服務(wù)便民熱線(xiàn)訴求分類(lèi)與代碼
- 項(xiàng)目立項(xiàng)審批制度
- 員工自愿放棄社保聲明書(shū)范本
- 第13課《資本主義世界殖民體系與亞非拉民族獨(dú)立運(yùn)動(dòng)》中職高一下學(xué)期高教版(2023)世界歷史全一冊(cè)
評(píng)論
0/150
提交評(píng)論