新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題06 導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題(講)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題06 導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題(講)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題06 導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題(講)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題06 導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題(講)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題06 導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題(講)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一篇熱點(diǎn)、難點(diǎn)突破篇專題06導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題(講)真題體驗(yàn)感悟高考1.(2021·北京·高考真題)已知函數(shù)SKIPIF1<0,給出下列四個(gè)結(jié)論:①若SKIPIF1<0,SKIPIF1<0恰有2個(gè)零點(diǎn);②存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有1個(gè)零點(diǎn);③存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個(gè)零點(diǎn);④存在正數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個(gè)零點(diǎn).其中所有正確結(jié)論的序號(hào)是_______.【答案】①②④【分析】由SKIPIF1<0可得出SKIPIF1<0,考查直線SKIPIF1<0與曲線SKIPIF1<0的左、右支分別相切的情形,利用方程思想以及數(shù)形結(jié)合可判斷各選項(xiàng)的正誤.【詳解】對(duì)于①,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,①正確;對(duì)于②,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,存在SKIPIF1<0,使得SKIPIF1<0只有一個(gè)零點(diǎn),②正確;對(duì)于③,當(dāng)直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與曲線SKIPIF1<0有兩個(gè)交點(diǎn),若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),則直線SKIPIF1<0與曲線SKIPIF1<0有兩個(gè)交點(diǎn),直線SKIPIF1<0與曲線SKIPIF1<0有一個(gè)交點(diǎn),所以,SKIPIF1<0,此不等式無(wú)解,因此,不存在SKIPIF1<0,使得函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),③錯(cuò)誤;對(duì)于④,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),④正確.故答案為:①②④.【點(diǎn)睛】思路點(diǎn)睛:已知函數(shù)的零點(diǎn)或方程的根的情況,求解參數(shù)的取值范圍問(wèn)題的本質(zhì)都是研究函數(shù)的零點(diǎn)問(wèn)題,求解此類問(wèn)題的一般步驟:(1)轉(zhuǎn)化,即通過(guò)構(gòu)造函數(shù),把問(wèn)題轉(zhuǎn)化成所構(gòu)造函數(shù)的零點(diǎn)問(wèn)題;(2)列式,即根據(jù)函數(shù)的零點(diǎn)存在定理或結(jié)合函數(shù)的圖象列出關(guān)系式;(3)得解,即由列出的式子求出參數(shù)的取值范圍.2.(2019·全國(guó)·高考真題(文))已知函數(shù)SKIPIF1<0.證明:(1)SKIPIF1<0存在唯一的極值點(diǎn);(2)SKIPIF1<0有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù).【答案】(1)見(jiàn)詳解;(2)見(jiàn)詳解【分析】(1)先對(duì)函數(shù)SKIPIF1<0求導(dǎo),根據(jù)導(dǎo)函數(shù)的單調(diào)性,得到存在唯一SKIPIF1<0,使得SKIPIF1<0,進(jìn)而可得判斷函數(shù)SKIPIF1<0的單調(diào)性,即可確定其極值點(diǎn)個(gè)數(shù),證明出結(jié)論成立;(2)先由(1)的結(jié)果,得到SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0在SKIPIF1<0內(nèi)存在唯一實(shí)根,記作SKIPIF1<0,再求出SKIPIF1<0,即可結(jié)合題意,說(shuō)明結(jié)論成立.【詳解】(1)由題意可得,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,顯然SKIPIF1<0單調(diào)遞增;又SKIPIF1<0,SKIPIF1<0,故存在唯一SKIPIF1<0,使得SKIPIF1<0;又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;因此,SKIPIF1<0存在唯一的極值點(diǎn);(2)由(1)知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0內(nèi)存在唯一實(shí)根,記作SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0是方程SKIPIF1<0在SKIPIF1<0內(nèi)的唯一實(shí)根;綜上,SKIPIF1<0有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù).【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,通常需要對(duì)函數(shù)求導(dǎo),用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性、極值、以及函數(shù)零點(diǎn)的問(wèn)題,屬于??碱}型.3.(2021·浙江·高考真題)設(shè)a,b為實(shí)數(shù),且SKIPIF1<0,函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若對(duì)任意SKIPIF1<0,函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),求a的取值范圍;(3)當(dāng)SKIPIF1<0時(shí),證明:對(duì)任意SKIPIF1<0,函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,滿足SKIPIF1<0.(注:SKIPIF1<0是自然對(duì)數(shù)的底數(shù))【答案】(1)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時(shí),函數(shù)的單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0;(2)SKIPIF1<0;(3)證明見(jiàn)解析.【分析】(1)首先求得導(dǎo)函數(shù)的解析式,然后分類討論即可確定函數(shù)的單調(diào)性;(2)將原問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,然后構(gòu)造新函數(shù),利用導(dǎo)函數(shù)研究函數(shù)的性質(zhì)并進(jìn)行放縮即可確定實(shí)數(shù)a的取值范圍;(3)方法一:結(jié)合(2)的結(jié)論將原問(wèn)題進(jìn)行等價(jià)變形,然后利用分析法即可證得題中的結(jié)論成立.【詳解】(1)SKIPIF1<0,①若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增.綜上可得,SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時(shí),函數(shù)的單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.(2)SKIPIF1<0有2個(gè)不同零點(diǎn)SKIPIF1<0有2個(gè)不同解SKIPIF1<0有2個(gè)不同的解,令SKIPIF1<0,則SKIPIF1<0,記SKIPIF1<0,記SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0.即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.(3)[方法一]【最優(yōu)解】:SKIPIF1<0有2個(gè)不同零點(diǎn),則SKIPIF1<0,故函數(shù)的零點(diǎn)一定為正數(shù).由(2)可知有2個(gè)不同零點(diǎn),記較大者為SKIPIF1<0,較小者為SKIPIF1<0,SKIPIF1<0,注意到函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,又由SKIPIF1<0知SKIPIF1<0,SKIPIF1<0,要證SKIPIF1<0,只需SKIPIF1<0,SKIPIF1<0且關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以只需證SKIPIF1<0,只需證SKIPIF1<0,只需證SKIPIF1<0,SKIPIF1<0,只需證SKIPIF1<0在SKIPIF1<0時(shí)為正,由于SKIPIF1<0,故函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0時(shí)為正,從而題中的不等式得證.[方法二]:分析+放縮法SKIPIF1<0有2個(gè)不同零點(diǎn)SKIPIF1<0,不妨設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0(其中SKIPIF1<0).且SKIPIF1<0.要證SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0,只需證SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.所以只需證SKIPIF1<0.而SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以只需證SKIPIF1<0.所以SKIPIF1<0,原命題得證.[方法三]:若SKIPIF1<0且SKIPIF1<0,則滿足SKIPIF1<0且SKIPIF1<0,由(Ⅱ)知SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0且SKIPIF1<0.又SKIPIF1<0,故進(jìn)一步有SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0且SKIPIF1<0,從而SKIPIF1<0..因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故只需證SKIPIF1<0.又因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,故只需證SKIPIF1<0,即SKIPIF1<0,注意SKIPIF1<0時(shí)有SKIPIF1<0,故不等式成立.【整體點(diǎn)評(píng)】本題第二、三問(wèn)均涉及利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)問(wèn)題,其中第三問(wèn)難度更大,涉及到三種不同的處理方法,方法一:直接分析零點(diǎn)SKIPIF1<0,將要證明的不等式消元,代換為關(guān)于SKIPIF1<0的函數(shù),再利用零點(diǎn)反代法,換為關(guān)于SKIPIF1<0的不等式,移項(xiàng)作差構(gòu)造函數(shù),利用導(dǎo)數(shù)分析范圍.方法二:通過(guò)分析放縮,找到使得結(jié)論成立的充分條件,方法比較冒險(xiǎn)!方法三:利用兩次零點(diǎn)反代法,將不等式化簡(jiǎn),再利用函數(shù)的單調(diào)性,轉(zhuǎn)化為SKIPIF1<0與0比較大小,代入函數(shù)放縮得到結(jié)論.總結(jié)規(guī)律預(yù)測(cè)考向(一)規(guī)律與預(yù)測(cè)1.高考對(duì)導(dǎo)數(shù)的考查要求一般有三個(gè)層次:第一層次主要考查求導(dǎo)公式,求導(dǎo)法則與導(dǎo)數(shù)的幾何意義;第二層次是導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,包括求函數(shù)的單調(diào)區(qū)間、極值、最值等;第三層次是綜合考查,如研究函數(shù)零點(diǎn)、證明不等式、恒成立問(wèn)題、求參數(shù)等,包括解決應(yīng)用問(wèn)題,將導(dǎo)數(shù)內(nèi)容和傳統(tǒng)內(nèi)容中有關(guān)不等式、數(shù)列及函數(shù)單調(diào)性有機(jī)結(jié)合,設(shè)計(jì)綜合題.2.涉及導(dǎo)數(shù)與零點(diǎn)問(wèn)題,主要有:函數(shù)零點(diǎn)個(gè)數(shù)的判斷與證明、根據(jù)函數(shù)的零點(diǎn)個(gè)數(shù)或零點(diǎn)情況求參數(shù)的取值范圍、與零點(diǎn)相關(guān)的不等式恒成立或證明問(wèn)題等(二)本專題考向展示考點(diǎn)突破典例分析考向一函數(shù)零點(diǎn)個(gè)數(shù)的判斷與證明【核心知識(shí)】解函數(shù)零點(diǎn)問(wèn)題的一般思路(1)對(duì)函數(shù)求導(dǎo).(2)分析函數(shù)的單調(diào)性,極值情況.(3)結(jié)合函數(shù)性質(zhì)畫函數(shù)的草圖.(4)依據(jù)函數(shù)草圖確定函數(shù)零點(diǎn)情況.【典例分析】典例1.(2022·河南·駐馬店市第二高級(jí)中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,則方程SKIPIF1<0的解的個(gè)數(shù)是(

)A.0 B.1 C.2 D.3【答案】C【分析】根據(jù)給定條件,構(gòu)造函數(shù)SKIPIF1<0,探討函數(shù)單調(diào)性,借助零點(diǎn)存在性定理判斷作答.【詳解】令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,則存在SKIPIF1<0,使得SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求導(dǎo)得SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上遞增,而SKIPIF1<0,則存在SKIPIF1<0,使得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0遞增,SKIPIF1<0,而SKIPIF1<0,則存在SKIPIF1<0,使得SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),又函數(shù)SKIPIF1<0在SKIPIF1<0上無(wú)零點(diǎn),因此函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),所以函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為2,即方程SKIPIF1<0的解的個(gè)數(shù)是2.故選:C典例2.(2022·吉林長(zhǎng)春·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的值域;(2)討論函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù).【答案】(1)SKIPIF1<0(2)答案見(jiàn)解析【分析】(1)利用導(dǎo)數(shù)求得SKIPIF1<0的單調(diào)區(qū)間,進(jìn)而求得SKIPIF1<0的值域.(2)利用多次求導(dǎo)的方法,結(jié)合對(duì)SKIPIF1<0進(jìn)行分類討論,由此求得SKIPIF1<0零點(diǎn)的個(gè)數(shù).【詳解】(1)由SKIPIF1<0可知SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,xSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0減極小值增SKIPIF1<0,SKIPIF1<0無(wú)最大值.即SKIPIF1<0的值域?yàn)镾KIPIF1<0.(2)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),可知SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0單調(diào)遞增,即此時(shí)SKIPIF1<0有唯一零點(diǎn).當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.即SKIPIF1<0,①當(dāng)k=1時(shí),SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0有唯一零點(diǎn).②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0存在一個(gè)零點(diǎn),此時(shí)SKIPIF1<0共有2個(gè)零點(diǎn).③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0存在一個(gè)零點(diǎn),此時(shí)SKIPIF1<0共有2個(gè)零點(diǎn).綜上,當(dāng)SKIPIF1<0或k=1時(shí),SKIPIF1<0有唯一零點(diǎn).當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0有2個(gè)零點(diǎn).典例3.(2019·全國(guó)·高考真題(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù).證明:(1)SKIPIF1<0在區(qū)間SKIPIF1<0存在唯一極大值點(diǎn);(2)SKIPIF1<0有且僅有2個(gè)零點(diǎn).【答案】(1)見(jiàn)解析;(2)見(jiàn)解析【分析】(1)求得導(dǎo)函數(shù)后,可判斷出導(dǎo)函數(shù)在SKIPIF1<0上單調(diào)遞減,根據(jù)零點(diǎn)存在定理可判斷出SKIPIF1<0,使得SKIPIF1<0,進(jìn)而得到導(dǎo)函數(shù)在SKIPIF1<0上的單調(diào)性,從而可證得結(jié)論;(2)由(1)的結(jié)論可知SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的唯一零點(diǎn);當(dāng)SKIPIF1<0時(shí),首先可判斷出在SKIPIF1<0上無(wú)零點(diǎn),再利用零點(diǎn)存在定理得到SKIPIF1<0在SKIPIF1<0上的單調(diào)性,可知SKIPIF1<0,不存在零點(diǎn);當(dāng)SKIPIF1<0時(shí),利用零點(diǎn)存在定理和SKIPIF1<0單調(diào)性可判斷出存在唯一一個(gè)零點(diǎn);當(dāng)SKIPIF1<0,可證得SKIPIF1<0;綜合上述情況可證得結(jié)論.【詳解】(1)由題意知:SKIPIF1<0定義域?yàn)椋篠KIPIF1<0且SKIPIF1<0令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減SKIPIF1<0在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減則SKIPIF1<0為SKIPIF1<0唯一的極大值點(diǎn)即:SKIPIF1<0在區(qū)間SKIPIF1<0上存在唯一的極大值點(diǎn)SKIPIF1<0.(2)由(1)知:SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),由(1)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0

SKIPIF1<0在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的唯一零點(diǎn)②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0

SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,此時(shí)SKIPIF1<0,不存在零點(diǎn)又SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上恒成立,此時(shí)不存在零點(diǎn)③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞減SKIPIF1<0在SKIPIF1<0上單調(diào)遞減又SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn)④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上不存在零點(diǎn)綜上所述:SKIPIF1<0有且僅有SKIPIF1<0個(gè)零點(diǎn)【規(guī)律方法】1.利用導(dǎo)數(shù)判斷或證明函數(shù)零點(diǎn)個(gè)數(shù)的策略:借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值后,通過(guò)極值的正負(fù)以及函數(shù)的單調(diào)性判斷函數(shù)圖象的走勢(shì),從而判斷零點(diǎn)個(gè)數(shù).2.常用方法:(1)直接法:直接研究函數(shù),求出極值以及最值,畫出草圖.函數(shù)零點(diǎn)的個(gè)數(shù)問(wèn)題即是函數(shù)圖象與x軸交點(diǎn)的個(gè)數(shù)問(wèn)題.(2)構(gòu)造新函數(shù)法:將問(wèn)題轉(zhuǎn)化為研究?jī)珊瘮?shù)圖象的交點(diǎn)問(wèn)題;(3)分離參數(shù)法:分離出參數(shù),轉(zhuǎn)化為a=g(x),根據(jù)導(dǎo)數(shù)的知識(shí)求出函數(shù)g(x)在某區(qū)間的單調(diào)性,求出極值以及最值,畫出草圖.函數(shù)零點(diǎn)的個(gè)數(shù)問(wèn)題即是直線y=a與函數(shù)y=g(x)圖象交點(diǎn)的個(gè)數(shù)問(wèn)題.只需要用a與函數(shù)g(x)的極值和最值進(jìn)行比較即可.考向二根據(jù)函數(shù)零點(diǎn)的情況求參數(shù)取值范圍【核心知識(shí)】利用函數(shù)零點(diǎn)的情況求參數(shù)范圍的方法(1)分離參數(shù)(a=g(x))后,將原問(wèn)題轉(zhuǎn)化為y=g(x)的值域(最值)問(wèn)題或轉(zhuǎn)化為直線y=a與y=g(x)的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題(優(yōu)選分離、次選分類)求解;(2)利用零點(diǎn)的存在性定理構(gòu)建不等式求解;(3)轉(zhuǎn)化為兩個(gè)熟悉的函數(shù)圖象的位置關(guān)系問(wèn)題,從而構(gòu)建不等式求解.【典例分析】典例4.(2022·青海玉樹(shù)·高二期末(理))已知SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間與極值;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的取值范圍.參考數(shù)據(jù):SKIPIF1<0【答案】(1)答案見(jiàn)解析;(2)SKIPIF1<0【分析】(1)當(dāng)SKIPIF1<0時(shí),利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0的單調(diào)性,可得出函數(shù)SKIPIF1<0的單調(diào)區(qū)間與極值;(2)分析可知SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性,數(shù)形結(jié)合可得出實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】(1)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,該函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0增極大值減極小值增所以,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0,極大值為SKIPIF1<0,即小值為SKIPIF1<0.(2)解:由題意可知,關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,即關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0;由SKIPIF1<0可得SKIPIF1<0.所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.所以,SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象如下圖所示:由圖可知,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象有兩個(gè)交點(diǎn).因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.典例5.(2022·山東菏澤·高三期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的極值;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),求實(shí)數(shù)a的取值范圍.【答案】(1)極小值為SKIPIF1<0,無(wú)極大值(2)SKIPIF1<0【分析】(1)當(dāng)SKIPIF1<0時(shí),對(duì)SKIPIF1<0求導(dǎo),得出SKIPIF1<0的單調(diào)性,即可求出SKIPIF1<0的極值;(2)方法一:分類討論SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,得出SKIPIF1<0的單調(diào)性,利用單調(diào)性列出不等式即可求出實(shí)數(shù)a的取值范圍;方法二:分離參數(shù),構(gòu)造新函數(shù),研究SKIPIF1<0的單調(diào)性,求出SKIPIF1<0在SKIPIF1<0的值域,進(jìn)而求出實(shí)數(shù)a的取值范圍.【詳解】(1)由函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0的極小值為SKIPIF1<0,無(wú)極大值.(2)方法一:由SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,要使SKIPIF1<0在SKIPIF1<0內(nèi)有零點(diǎn),則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,此時(shí)SKIPIF1<0,所以需SKIPIF1<0,所以SKIPIF1<0.③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,此時(shí)SKIPIF1<0,所以SKIPIF1<0恒成立,不符合條件.綜上可知,a的取值范圍為SKIPIF1<0.方法二:令SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.典例6.(2022·遼寧·高三期中)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)a=1時(shí),若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)t的取值范圍.【答案】(1)答案見(jiàn)解析(2)SKIPIF1<0【分析】(1)分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0討論求解即可;(2)由題意可知關(guān)于x的方程SKIPIF1<0有兩個(gè)不同的實(shí)根,進(jìn)而SKIPIF1<0,令SKIPIF1<0,要使SKIPIF1<0有兩個(gè)不同的實(shí)根,則需SKIPIF1<0有兩個(gè)不同的實(shí)根.令SKIPIF1<0,利用導(dǎo)數(shù)法研究SKIPIF1<0的零點(diǎn)即可【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.綜上可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以關(guān)于x的方程SKIPIF1<0有兩個(gè)不同的實(shí)根,即關(guān)于x的方程SKIPIF1<0有兩個(gè)不同的實(shí)根.因?yàn)閤>0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.要使SKIPIF1<0有兩個(gè)不同的實(shí)根,則需SKIPIF1<0有兩個(gè)不同的實(shí)根.令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.當(dāng)t<1時(shí),SKIPIF1<0,SKIPIF1<0沒(méi)有零點(diǎn);當(dāng)t=1時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立,SKIPIF1<0只有一個(gè)零點(diǎn);當(dāng)t>1時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn),在SKIPIF1<0上有一個(gè)零點(diǎn),符合條件.綜上,實(shí)數(shù)t的取值范圍是SKIPIF1<0.【總結(jié)提升】已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解考向三與零點(diǎn)相關(guān)的不等式恒成立或證明問(wèn)題【核心知識(shí)】1.不等式恒成立問(wèn)題常見(jiàn)方法:①分離參數(shù)恒成立(即可)或恒成立(即可);②數(shù)形結(jié)合(圖象在上方即可);③討論最值或恒成立;④討論參數(shù),排除不合題意的參數(shù)范圍,篩選出符合題意的參數(shù)范圍.2.含參數(shù)的不等式恒成立的處理方法:①的圖象永遠(yuǎn)落在圖象的上方;②構(gòu)造函數(shù)法,一般構(gòu)造,;③參變分離法,將不等式等價(jià)變形為,或,進(jìn)而轉(zhuǎn)化為求函數(shù)的最值.3.利用參變量分離法求解函數(shù)不等式恒(能)成立,可根據(jù)以下原則進(jìn)行求解:(1),;(2),;(3),;(4),.【典例分析】典例7.(2022·貴州·頂效開(kāi)發(fā)區(qū)頂興學(xué)校高三期中(理))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有3個(gè)不同的實(shí)根SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】對(duì)SKIPIF1<0求導(dǎo),研究函數(shù)SKIPIF1<0的單調(diào)性、極值等性質(zhì),利用SKIPIF1<0的圖象求得SKIPIF1<0的范圍,以及SKIPIF1<0與SKIPIF1<0的關(guān)系,將問(wèn)題轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)的值域的問(wèn)題進(jìn)行求解即可.【詳解】因?yàn)镾KIPIF1<0,故可得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.則SKIPIF1<0的極大值為SKIPIF1<0,SKIPIF1<0的極小值為SKIPIF1<0,∵SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,根據(jù)以上信息,作出SKIPIF1<0的大致圖象如圖所示:由圖可知,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有3個(gè)交點(diǎn)時(shí),方程SKIPIF1<0有3個(gè)不同的實(shí)根,則SKIPIF1<0,因?yàn)榉匠蘏KIPIF1<0的3個(gè)不同的實(shí)根為SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0故SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故可得SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0SKIPIF1<0.故選:A.典例8.【多選題】(2022·山東·青島二中高三期中)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有四個(gè)不同的零點(diǎn):SKIPIF1<0,且SKIPIF1<0,則以下結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】設(shè)SKIPIF1<0,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0的單調(diào)性與極值,數(shù)形結(jié)合可判斷B的正誤;分析可知SKIPIF1<0,結(jié)合基本不等式可判斷A的正誤;構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性,可判斷CD的正誤.【詳解】設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,所以,函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,作出函數(shù)SKIPIF1<0與SKIPIF1<0的大致圖象,由圖可知,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有四個(gè)交點(diǎn),B對(duì);因?yàn)镾KIPIF1<0,則SKIPIF1<0,由圖可知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,A對(duì);令SKIPIF1<0,其中SKIPIF1<0,由圖可知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,C錯(cuò)D對(duì).故選:ABD.典例9.(貴州省六盤水市2021-2022學(xué)年高二下期末)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有兩個(gè)不相同的零點(diǎn)SKIPIF1<0,證明SKIPIF1<0.【答案】(1)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù);SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù);(2)證明見(jiàn)解析.【分析】(1)求出函數(shù)導(dǎo)數(shù),對(duì)SKIPIF1<0分類討論,根據(jù)導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性即可得解;(2)由函數(shù)的單調(diào)性可確定函數(shù)零點(diǎn)在SKIPIF1<0兩側(cè),要證原不等式可轉(zhuǎn)化為證SKIPIF1<0,再由函數(shù)的單調(diào)性轉(zhuǎn)化為證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)即可得證.【詳解】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù);SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù).綜上,SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù);SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù).(2)由(1)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,至多有1個(gè)零點(diǎn),不符合題意;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0為函數(shù)的極小值,函數(shù)有兩個(gè)零點(diǎn)則SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以只要證SKIPIF1<0,又SKIPIF1<0,即證SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0成立,從而SKIPIF1<0成立.典例10.(遼寧省名校聯(lián)盟2022-2023學(xué)年高三上學(xué)期11月份聯(lián)合考試數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0是SKIPIF1<0的兩個(gè)零點(diǎn),證明:SKIPIF1<0.【答案】(1)答案見(jiàn)解析(2)證明見(jiàn)解析【分析】(1)先求導(dǎo),然后分類討論即可求解;(2)先利用導(dǎo)數(shù)法可得SKIPIF1<0是SKIPIF1<0上的減函數(shù),SKIPIF1<0上的增函數(shù),從而可知SKIPIF1<0,由(1)可知,SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,由此即可求證【詳解】(1)SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí).議SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0符號(hào)相同,若SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;若SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0有兩個(gè)不等正根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0與SKIPIF1<0隨x的變化情況如下表:xSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的增區(qū)間為SKIPIF1<0,沒(méi)有減區(qū)間;當(dāng)SKIPIF1<0吋,SKIPIF1<0的減區(qū)間為SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論