新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)技巧04 解答題解法與技巧(講)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)技巧04 解答題解法與技巧(講)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)技巧04 解答題解法與技巧(講)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)技巧04 解答題解法與技巧(講)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)技巧04 解答題解法與技巧(講)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二篇解題技巧篇技巧04解答題解法與技巧(講)考向速覽規(guī)律預(yù)測(cè)1.解答題中檔常見(jiàn)題型:解三角形(三角函數(shù)圖象與性質(zhì))與簡(jiǎn)單恒等變換相結(jié)合,考查利用正、余弦定理求解三角形邊、角、面積問(wèn)題,常涉及最值、范圍問(wèn)題.注意在平面四邊形中考查三角形應(yīng)用.立體幾何問(wèn)題,在解答題中多與線、面位置關(guān)系的證明結(jié)合,考查直線與平面所成角、二面角(平面與平面的夾角)的求法,注意與體積最值問(wèn)題交匯考查,著重考查推理論證能力和空間想象能力,而且對(duì)數(shù)學(xué)運(yùn)算的要求有加強(qiáng)的趨勢(shì).轉(zhuǎn)化與化歸思想貫穿整個(gè)立體幾何的始終;高考數(shù)列解答題主要題型有:等差、等比數(shù)列的綜合問(wèn)題;證明一個(gè)數(shù)列為等差或等比數(shù)列;求數(shù)列的通項(xiàng)及非等差、等比數(shù)列的前n項(xiàng)和;證明數(shù)列型不等式.難度穩(wěn)定在中檔.2.解答題中檔以上題型:對(duì)圓錐曲線的考查在解答題部分主要體現(xiàn)以下考法:第一問(wèn)一般是先求圓錐曲線的方程或離心率等較基礎(chǔ)的知識(shí);第二問(wèn)往往涉及定點(diǎn)、定值、最值、取值范圍等探究性問(wèn)題,從新高考命題看,連續(xù)兩年出現(xiàn)直線與雙曲線位置關(guān)系問(wèn)題,難度不減.解決此類(lèi)問(wèn)題的關(guān)鍵是通過(guò)聯(lián)立方程組來(lái)解決;高考對(duì)函數(shù)與導(dǎo)數(shù)的考查,已經(jīng)從直接利用導(dǎo)數(shù)討論函數(shù)的單調(diào)區(qū)間,或利用函數(shù)單調(diào)性求函數(shù)的極值、最值問(wèn)題,轉(zhuǎn)變成利用求導(dǎo)的方法證明不等式、探求參數(shù)的取值范圍、解決函數(shù)的零點(diǎn)、方程根的問(wèn)題,以及在某不等式成立的條件下,求某一參數(shù)或某兩個(gè)參數(shù)構(gòu)成的代數(shù)式的最值.3.難度搖擺不定的概率統(tǒng)計(jì)問(wèn)題:對(duì)概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例的考查主要有三個(gè)方面:一是統(tǒng)計(jì)與統(tǒng)計(jì)案例,其中回歸分析、獨(dú)立性檢驗(yàn),用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征是考查重點(diǎn),常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識(shí)交匯考查:二是統(tǒng)計(jì)與概率分布的綜合,常與抽樣方法、莖葉圖、頻率分布直方圖、頻率、概率以及概率分布列等知識(shí)交匯考查:三是均值與方差的綜合應(yīng)用,常用離散型隨機(jī)變量、概率、相互獨(dú)立事件、二項(xiàng)分布、條件概率、正態(tài)分布等知識(shí)交匯考查.回歸分析與獨(dú)立性檢驗(yàn)常與概率交匯命題.中檔以上的題目主要是概率問(wèn)題,涉及隨機(jī)變量問(wèn)題,有時(shí)與數(shù)列、導(dǎo)數(shù)等相結(jié)合.另外,高考的核心功能是“立德樹(shù)人,服務(wù)選才,引導(dǎo)教學(xué)”,特別是在發(fā)揮“立德樹(shù)人”功能方面,更加注重“五育”并舉,在選擇題、填空題、解答題中均有相關(guān)背景的題目出現(xiàn),如“一帶一路”、“疫情防控”、“南水北調(diào)”、“亞運(yùn)賽事”、“冬奧賽事”、“低碳生活”、“扶貧脫貧”、“建黨百年”、“社區(qū)生活”等,特別是考查概率與統(tǒng)計(jì)的綜合問(wèn)題,往往以社會(huì)熱點(diǎn)話題為背景,值得我們關(guān)注.方法技巧典例分析解答題是高考試卷中的一類(lèi)重要題型,通常是高考的把關(guān)題和壓軸題,具有較好的區(qū)分層次和選拔功能.目前的高考解答題已經(jīng)由單純的知識(shí)綜合型轉(zhuǎn)化為知識(shí)、方法和能力的綜合型解答題.要求考生具有一定的創(chuàng)新意識(shí)和創(chuàng)新能力.解答題綜合考查運(yùn)算能力、邏輯思維能力、空間想象能力和分析問(wèn)題、解決問(wèn)題的能力.因此,抓住解答題得分要點(diǎn),是高考決勝的必要條件.復(fù)習(xí)的后期要特別注意以下幾點(diǎn):1.高考閱卷速度以秒計(jì),規(guī)范答題少丟分高考閱卷評(píng)分標(biāo)準(zhǔn)非常細(xì),按步驟、得分點(diǎn)給分,評(píng)閱分步驟、采“點(diǎn)”給分.關(guān)鍵步驟,有則給分,無(wú)則沒(méi)分.所以考場(chǎng)答題應(yīng)盡量按得分點(diǎn)、步驟規(guī)范書(shū)寫(xiě).2.不求巧妙用通法,通性通法要強(qiáng)化高考注重通性通法的考查,高考評(píng)分細(xì)則只對(duì)主要解題方法,也是最基本的方法,給出詳細(xì)得分標(biāo)準(zhǔn),所以用常規(guī)方法往往與參考答案一致,比較容易抓住得分點(diǎn).3.干凈整潔保得分,簡(jiǎn)明扼要是關(guān)鍵高考已實(shí)行網(wǎng)上閱卷,若書(shū)寫(xiě)整潔,表達(dá)清楚,一定會(huì)得到合理或偏高的分?jǐn)?shù),若不規(guī)范可能就會(huì)吃虧.若寫(xiě)錯(cuò)需改正,只需劃去,不要亂涂亂劃,否則易丟分.4.狠抓基礎(chǔ)保成績(jī),分步解決克難題(1)基礎(chǔ)題爭(zhēng)取得滿(mǎn)分.涉及的定理、公式要準(zhǔn)確,數(shù)學(xué)語(yǔ)言要規(guī)范,仔細(xì)計(jì)算,爭(zhēng)取前3個(gè)解答題及選考不丟分.(2)壓軸題爭(zhēng)取多得分.第(Ⅰ)問(wèn)一般難度不大,要保證得分,第(Ⅱ)問(wèn)若不會(huì),也要根據(jù)條件或第(Ⅰ)問(wèn)的結(jié)論推出一些結(jié)論,可能就是得分點(diǎn).5.評(píng)分細(xì)則是閱卷的依據(jù),通過(guò)認(rèn)真研讀評(píng)分細(xì)則,解題步驟的書(shū)寫(xiě),要保證邏輯思路清晰,用詞用句、符號(hào)、行段等,規(guī)范無(wú)誤,突出過(guò)程中“結(jié)論”的“醒目”位置,做到會(huì)做的題得全分;對(duì)于最后的壓軸題也可以按步得分,踩點(diǎn)得分,一分也要搶?zhuān)畯慕鼛啄昝}原則、命題要求及高考命題看,解答趨勢(shì)是不拘泥于某種特定模式,引導(dǎo)師生避免“解題模式化”,防止“思維固化”、“弱化”思維創(chuàng)新能力.因此,我們應(yīng)在規(guī)范答題過(guò)程上著力!01三角函數(shù)與解三角形【核心提示】1.三角函數(shù)圖象與性質(zhì)的綜合問(wèn)題.2.三角形中基本量的求解(解三角形).3.解三角形中的證明問(wèn)題.4.解三角形中的范圍、最值問(wèn)題【典例分析】典例1.(2020·新高考全國(guó)Ⅰ)在①ac=SKIPIF1<0,②csinA=3,③c=SKIPIF1<0b這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,若問(wèn)題中的三角形存在,求c的值;若問(wèn)題中的三角形不存在,說(shuō)明理由.問(wèn)題:是否存在△ABC,它的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且sinA=SKIPIF1<0sinB,C=SKIPIF1<0,________?注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.步驟要點(diǎn)規(guī)范解答閱卷細(xì)則(1)選擇條件:在所給條件中選擇自己熟悉、易于轉(zhuǎn)化的條件.(2)選用工具:根據(jù)條件選用正弦定理或余弦定理實(shí)現(xiàn)邊角之間的轉(zhuǎn)化.(3)計(jì)算作答:將條件代入定理進(jìn)行計(jì)算,確定題目結(jié)論.解方案一:選條件①.由C=SKIPIF1<0和余弦定理得SKIPIF1<0=SKIPIF1<0.由sinA=SKIPIF1<0sinB及正弦定理得a=SKIPIF1<0b.…3分于是SKIPIF1<0=SKIPIF1<0,由此可得b=c.6分由①ac=SKIPIF1<0,解得a=SKIPIF1<0,b=c=1.8分因此,選條件①時(shí)問(wèn)題中的三角形存在,此時(shí)c=1.10分方案二:選條件②.由C=SKIPIF1<0和余弦定理得SKIPIF1<0=SKIPIF1<0.由sinA=SKIPIF1<0sinB及正弦定理得a=SKIPIF1<0b…3分于是SKIPIF1<0=SKIPIF1<0,6分由此可得b=c,B=C=SKIPIF1<0,A=SKIPIF1<0.由②csinA=3,所以c=b=2SKIPIF1<0,a=6.…8分因此,選條件②時(shí)問(wèn)題中的三角形存在,此時(shí)c=2SKIPIF1<0.10分方案三:選條件③.由C=SKIPIF1<0和余弦定理得SKIPIF1<0=SKIPIF1<0.由sinA=SKIPIF1<0sinB及正弦定理得a=SKIPIF1<0b.…3分于是SKIPIF1<0=SKIPIF1<0,6分由此可得b=c.8分由③c=SKIPIF1<0b,與b=c矛盾.因此,選條件③時(shí)問(wèn)題中的三角形不存在.10分(1)寫(xiě)出余弦定理代入即得2分;(2)寫(xiě)出正弦定理得到a,b之間的關(guān)系即得2分;(3)定理使用順序不影響得分,其他正確解法同樣給分;(4)計(jì)算正確沒(méi)有最后結(jié)論扣2分.典例2.(2022·全國(guó)·統(tǒng)考高考真題)記SKIPIF1<0的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知SKIPIF1<0.(1)若SKIPIF1<0,求B;(2)求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)二倍角公式以及兩角差的余弦公式可將SKIPIF1<0化成SKIPIF1<0,再結(jié)合SKIPIF1<0,即可求出;(2)由(1)知,SKIPIF1<0,SKIPIF1<0,再利用正弦定理以及二倍角公式將SKIPIF1<0化成SKIPIF1<0,然后利用基本不等式即可解出.【詳解】(1)因?yàn)镾KIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0;(2)由(1)知,SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.【點(diǎn)睛】解三角形中最值或范圍問(wèn)題,通常涉及與邊長(zhǎng),周長(zhǎng)有關(guān)的范圍問(wèn)題,與面積有關(guān)的范圍問(wèn)題,或與角度有關(guān)的范圍問(wèn)題,常用處理思路:①余弦定理結(jié)合基本不等式構(gòu)造不等關(guān)系求出答案;②采用正弦定理邊化角,利用三角函數(shù)的范圍求出最值或范圍,如果三角形為銳角三角形,或其他的限制,通常采用這種方法;③巧妙利用三角換元,實(shí)現(xiàn)邊化角,進(jìn)而轉(zhuǎn)化為正弦或余弦函數(shù)求出最值.典例3.(2023·全國(guó)·模擬預(yù)測(cè))在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求△ABC的面積.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【分析】(1)利用正弦定理、誘導(dǎo)公式及三角恒等變換等化簡(jiǎn)已知等式得到SKIPIF1<0,再根據(jù)三角形內(nèi)角的范圍得到SKIPIF1<0,再次利用正弦定理即可得證;(2)利用已知及(1)中的結(jié)論得到SKIPIF1<0的值,利用同角的三角函數(shù)關(guān)系得到SKIPIF1<0,結(jié)合題目條件SKIPIF1<0求出a的值,再由三角形的面積公式即可求解;【詳解】(1)由SKIPIF1<0及正弦定理可得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)锳,B為三角形的內(nèi)角,所以SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0(舍去)或SKIPIF1<0.故SKIPIF1<0.由正弦定理可得SKIPIF1<0,故SKIPIF1<0.(2)由(1)得:SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以△ABC的面積為SKIPIF1<0.02立體幾何【核心提示】1.用空間向量證明平行、垂直2.求直線與平面所成的角(函數(shù)值)3.求二面角(函數(shù)值)4.空間中的距離、翻折、探索性問(wèn)題5.立體幾何中的動(dòng)態(tài)問(wèn)題.【典例分析】典例4.(2022·全國(guó)·統(tǒng)考高考真題)如圖,直三棱柱SKIPIF1<0的體積為4,SKIPIF1<0的面積為SKIPIF1<0.(1)求A到平面SKIPIF1<0的距離;(2)設(shè)D為SKIPIF1<0的中點(diǎn),SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,求二面角SKIPIF1<0的正弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由等體積法運(yùn)算即可得解;(2)由面面垂直的性質(zhì)及判定可得SKIPIF1<0平面SKIPIF1<0,建立空間直角坐標(biāo)系,利用空間向量法即可得解.【詳解】(1)在直三棱柱SKIPIF1<0中,設(shè)點(diǎn)A到平面SKIPIF1<0的距離為h,則SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)A到平面SKIPIF1<0的距離為SKIPIF1<0;(2)取SKIPIF1<0的中點(diǎn)E,連接AE,如圖,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,在直三棱柱SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,由SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0且相交,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0兩兩垂直,以B為原點(diǎn),建立空間直角坐標(biāo)系,如圖,由(1)得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的中點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量SKIPIF1<0,則SKIPIF1<0,可取SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量SKIPIF1<0,則SKIPIF1<0,可取SKIPIF1<0,則SKIPIF1<0,所以二面角SKIPIF1<0的正弦值為SKIPIF1<0.典例5.(2021·全國(guó)·高考真題)如圖,在三棱錐A?BCD中,平面ABD⊥平面BCD,AB=AD,為的中點(diǎn).(1)證明:OA⊥CD;(2)若△OCD是邊長(zhǎng)為1的等邊三角形,點(diǎn)在棱上,DE=2EA,且二面角E?BC?D的大小為,求三棱錐A?BCD的體積.【答案】(1)證明見(jiàn)解析;(2)36【解析】【分析】(1)由題意首先證得線面垂直,然后利用線面垂直的定義證明線線垂直即可;(2)方法二:利用幾何關(guān)系找到二面角的平面角,然后結(jié)合相關(guān)的幾何特征計(jì)算三棱錐的體積即可.【詳解】(1)因?yàn)锳B=AD,O是中點(diǎn),所以O(shè)A⊥BD,因?yàn)镺A?平面ABD,平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以O(shè)A⊥平面BCD.因?yàn)镃D?平面BCD,所以O(shè)A⊥CD.(2)[方法一]:通性通法—坐標(biāo)法如圖所示,以O(shè)為坐標(biāo)原點(diǎn),為軸,OD為y軸,垂直O(jiān)D且過(guò)O的直線為x軸,建立空間直角坐標(biāo)系O?xyz,則C(32,所以EB=(0,?設(shè)n=x,y,z為平面則由EB?n=0EC?又平面BCD的一個(gè)法向量為OA=所以cosn,OA又點(diǎn)C到平面ABD的距離為,所以VA?BCD=所以三棱錐A?BCD的體積為36[方法二]【最優(yōu)解】:作出二面角的平面角如圖所示,作EG⊥BD,垂足為點(diǎn)G.作GF⊥BC,垂足為點(diǎn)F,連結(jié),則OA∥EG因?yàn)镺A⊥平面BCD,所以EG⊥平面BCD,∠EFG為二面角E?BC?D的平面角.因?yàn)椤螮FG=45°,所以EG=FG.由已知得OB=OD=1,故OB=OC=1.又∠OBC=∠OCB=30°,所以BC=3因?yàn)镚D=2VA?BCD[方法三]:三面角公式考慮三面角B?EDC,記∠EBD為α,∠EBC為β,∠DBC=30°,記二面角E?BC?D為.據(jù)題意,得θ=45°.對(duì)β使用三面角的余弦公式,可得cosβ=化簡(jiǎn)可得cosβ=3使用三面角的正弦公式,可得sinβ=sinαsin將①②兩式平方后相加,可得34由此得sin2α=1如圖可知α∈(0,π2)根據(jù)三角形相似知,點(diǎn)G為OD的三等分點(diǎn),即可得BG=4結(jié)合α的正切值,可得EG=23,OA=1從而可得三棱錐A?BCD【整體點(diǎn)評(píng)】(2)方法一:建立空間直角坐標(biāo)系是解析幾何中常用的方法,是此類(lèi)題的通性通法,其好處在于將幾何問(wèn)題代數(shù)化,適合于復(fù)雜圖形的處理;方法二:找到二面角的平面角是立體幾何的基本功,在找出二面角的同時(shí)可以對(duì)幾何體的幾何特征有更加深刻的認(rèn)識(shí),該法為本題的最優(yōu)解.方法三:三面角公式是一個(gè)優(yōu)美的公式,在很多題目的解析中靈活使用三面角公式可以使得問(wèn)題更加簡(jiǎn)單、直觀、迅速.典例6.(2023·河南·校聯(lián)考模擬預(yù)測(cè))如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是直角梯形,SKIPIF1<0為等邊三角形,SKIPIF1<0分別為棱SKIPIF1<0的中點(diǎn).(1)棱SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0平面SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,說(shuō)明理由;(2)若SKIPIF1<0,當(dāng)二面角SKIPIF1<0為SKIPIF1<0時(shí),證明:直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值小于SKIPIF1<0.【答案】(1)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0平面SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)根據(jù)題意,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,根據(jù)線面平行的判定定理即可證明;(2)根據(jù)題意,連接SKIPIF1<0,證得SKIPIF1<0平面SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,可得SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線分別為SKIPIF1<0,SKIPIF1<0軸,建立空間直角坐標(biāo)系,結(jié)合空間向量的坐標(biāo)運(yùn)算即可證明.【詳解】(1)當(dāng)點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,此時(shí)SKIPIF1<0如圖,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0.因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.(2)如圖,連接SKIPIF1<0.由條件可知SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.故SKIPIF1<0為二面角SKIPIF1<0的平面角,所以SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.在平面SKIPIF1<0內(nèi),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0兩兩垂直.以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線分別為SKIPIF1<0,SKIPIF1<0軸,建立空間直角坐標(biāo)系,如圖所示.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0.設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0故直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值小于SKIPIF1<0.03數(shù)列【核心提示】1.數(shù)列的判斷與證明2.數(shù)列求和3.數(shù)列與不等式—最值、范圍問(wèn)題.【典例分析】典例7.(2022·全國(guó)·統(tǒng)考高考真題)記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,已知SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(1)求SKIPIF1<0的通項(xiàng)公式;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見(jiàn)解析【分析】(1)利用等差數(shù)列的通項(xiàng)公式求得SKIPIF1<0,得到SKIPIF1<0,利用和與項(xiàng)的關(guān)系得到當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,進(jìn)而得:SKIPIF1<0,利用累乘法求得SKIPIF1<0,檢驗(yàn)對(duì)于SKIPIF1<0也成立,得到SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;(2)由(1)的結(jié)論,利用裂項(xiàng)求和法得到SKIPIF1<0,進(jìn)而證得.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,顯然對(duì)于SKIPIF1<0也成立,∴SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;(2)SKIPIF1<0∴SKIPIF1<0SKIPIF1<0典例8.(2021·全國(guó)·高考真題(文))設(shè)SKIPIF1<0是首項(xiàng)為1的等比數(shù)列,數(shù)列SKIPIF1<0滿(mǎn)足SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的前n項(xiàng)和.證明:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)證明見(jiàn)解析.【解析】【分析】(1)利用等差數(shù)列的性質(zhì)及SKIPIF1<0得到SKIPIF1<0,解方程即可;(2)利用公式法、錯(cuò)位相減法分別求出SKIPIF1<0,再作差比較即可.【詳解】(1)因?yàn)镾KIPIF1<0是首項(xiàng)為1的等比數(shù)列且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(2)[方法一]:作差后利用錯(cuò)位相減法求和SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.設(shè)SKIPIF1<0,

⑧則SKIPIF1<0.

⑨由⑧-⑨得SKIPIF1<0.所以SKIPIF1<0.因此SKIPIF1<0.故SKIPIF1<0.[方法二]【最優(yōu)解】:公式法和錯(cuò)位相減求和法證明:由(1)可得SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,②①SKIPIF1<0②得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.[方法三]:構(gòu)造裂項(xiàng)法由(Ⅰ)知SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,通過(guò)等式左右兩邊系數(shù)比對(duì)易得SKIPIF1<0,所以SKIPIF1<0.則SKIPIF1<0,下同方法二.[方法四]:導(dǎo)函數(shù)法設(shè)SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,下同方法二.【整體點(diǎn)評(píng)】1.本題主要考查數(shù)列的求和,涉及到等差數(shù)列的性質(zhì),錯(cuò)位相減法求數(shù)列的和,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題,其中證明不等式時(shí)采用作差法,或者作商法要根據(jù)式子得結(jié)構(gòu)類(lèi)型靈活選擇,關(guān)鍵是要看如何消項(xiàng)化簡(jiǎn)的更為簡(jiǎn)潔.(2)的方法一直接作差后利用錯(cuò)位相減法求其部分和,進(jìn)而證得結(jié)論;方法二根據(jù)數(shù)列的不同特點(diǎn),分別利用公式法和錯(cuò)位相減法求得SKIPIF1<0,然后證得結(jié)論,為最優(yōu)解;方法三采用構(gòu)造數(shù)列裂項(xiàng)求和的方法,關(guān)鍵是構(gòu)造SKIPIF1<0,使SKIPIF1<0,求得SKIPIF1<0的表達(dá)式,這是錯(cuò)位相減法的一種替代方法,方法四利用導(dǎo)數(shù)方法求和,也是代替錯(cuò)位相減求和法的一種方法.典例9.(2021秋·上海浦東新·高三上海南匯中學(xué)校考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,且SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求證數(shù)列SKIPIF1<0為等比數(shù)列,并求SKIPIF1<0的通項(xiàng)公式;(2)當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0對(duì)于任意SKIPIF1<0都成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)退SKIPIF1<0相減,得出遞推式,再用構(gòu)造法證明,最后求通項(xiàng)公式(2)恒成立問(wèn)題,通過(guò)分離SKIPIF1<0與SKIPIF1<0轉(zhuǎn)化為函數(shù)最值問(wèn)題求解【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0兩式相減得SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0SKIPIF1<0所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為3的等比數(shù)列所以SKIPIF1<0,所以SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0對(duì)于任意SKIPIF1<0都成立SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<004解析幾何【核心提示】1.圓錐曲線中的最值問(wèn)題2.圓錐曲線中的范圍問(wèn)題3.圓錐曲線中的證明問(wèn)題4.圓錐曲線中的定點(diǎn)問(wèn)題5.圓錐曲線中的定值問(wèn)題6.圓錐曲線中的存在性問(wèn)題.【典例分析】典例10.(2022·全國(guó)·統(tǒng)考高考真題)已知點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,直線l交C于P,Q兩點(diǎn),直線SKIPIF1<0的斜率之和為0.(1)求l的斜率;(2)若SKIPIF1<0,求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由點(diǎn)SKIPIF1<0在雙曲線上可求出SKIPIF1<0,易知直線l的斜率存在,設(shè)SKIPIF1<0,SKIPIF1<0,再根據(jù)SKIPIF1<0,即可解出l的斜率;(2)根據(jù)直線SKIPIF1<0的斜率之和為0可知直線SKIPIF1<0的傾斜角互補(bǔ),根據(jù)SKIPIF1<0即可求出直線SKIPIF1<0的斜率,再分別聯(lián)立直線SKIPIF1<0與雙曲線方程求出點(diǎn)SKIPIF1<0的坐標(biāo),即可得到直線SKIPIF1<0的方程以及SKIPIF1<0的長(zhǎng),由點(diǎn)到直線的距離公式求出點(diǎn)A到直線SKIPIF1<0的距離,即可得出SKIPIF1<0的面積.【詳解】(1)因?yàn)辄c(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,所以SKIPIF1<0,解得SKIPIF1<0,即雙曲線SKIPIF1<0.易知直線l的斜率存在,設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0可得,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0.所以由SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,與題意不符,舍去,故SKIPIF1<0.(2)[方法一]:【最優(yōu)解】常規(guī)轉(zhuǎn)化不妨設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由(1)知,SKIPIF1<0,當(dāng)SKIPIF1<0均在雙曲線左支時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去)此時(shí)PA與雙曲線的漸近線平行,與雙曲線左支無(wú)交點(diǎn),舍去;當(dāng)SKIPIF1<0均在雙曲線右支時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),于是,直線SKIPIF1<0,直線SKIPIF1<0,聯(lián)立SKIPIF1<0可得,SKIPIF1<0,因?yàn)榉匠逃幸粋€(gè)根為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,同理可得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,故SKIPIF1<0的面積為SKIPIF1<0.[方法二]:設(shè)直線AP的傾斜角為SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,及SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,同理,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0而SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0【整體點(diǎn)評(píng)】(2)法一:由第一問(wèn)結(jié)論利用傾斜角的關(guān)系可求出直線SKIPIF1<0的斜率,從而聯(lián)立求出點(diǎn)SKIPIF1<0坐標(biāo),進(jìn)而求出三角形面積,思路清晰直接,是該題的通性通法,也是最優(yōu)解;法二:前面解答與法一求解點(diǎn)SKIPIF1<0坐標(biāo)過(guò)程形式有所區(qū)別,最終目的一樣,主要區(qū)別在于三角形面積公式的選擇不一樣.典例11.(2021·全國(guó)·高考真題(理))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0.(1)求SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0的兩條切線,SKIPIF1<0是切點(diǎn),求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)圓的幾何性質(zhì)可得出關(guān)于SKIPIF1<0的等式,即可解出SKIPIF1<0的值;(2)設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,利用導(dǎo)數(shù)求出直線SKIPIF1<0、SKIPIF1<0,進(jìn)一步可求得直線SKIPIF1<0的方程,將直線SKIPIF1<0的方程與拋物線的方程聯(lián)立,求出SKIPIF1<0以及點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,利用三角形的面積公式結(jié)合二次函數(shù)的基本性質(zhì)可求得SKIPIF1<0面積的最大值.【詳解】(1)[方法一]:利用二次函數(shù)性質(zhì)求最小值由題意知,SKIPIF1<0,設(shè)圓M上的點(diǎn)SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0.從而有SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.又SKIPIF1<0,解之得SKIPIF1<0,因此SKIPIF1<0.[方法二]【最優(yōu)解】:利用圓的幾何意義求最小值拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0,解得SKIPIF1<0;(2)[方法一]:切點(diǎn)弦方程+韋達(dá)定義判別式求弦長(zhǎng)求面積法拋物線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,對(duì)該函數(shù)求導(dǎo)得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,同理可知,直線SKIPIF1<0的方程為SKIPIF1<0,由于點(diǎn)SKIPIF1<0為這兩條直線的公共點(diǎn),則SKIPIF1<0,所以,點(diǎn)A、SKIPIF1<0的坐標(biāo)滿(mǎn)足方程SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,由已知可得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積取最大值SKIPIF1<0.[方法二]:【最優(yōu)解】:切點(diǎn)弦法+分割轉(zhuǎn)化求面積+三角換元求最值同方法一得到SKIPIF1<0.過(guò)P作y軸的平行線交SKIPIF1<0于Q,則SKIPIF1<0.SKIPIF1<0.P點(diǎn)在圓M上,則SKIPIF1<0SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的面積最大,最大值為SKIPIF1<0.[方法三]:直接設(shè)直線AB方程法設(shè)切點(diǎn)A,B的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,聯(lián)立SKIPIF1<0和拋物線C的方程得SKIPIF1<0整理得SKIPIF1<0.判別式SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0.拋物線C的方程為SKIPIF1<0,即SKIPIF1<0,有SKIPIF1<0.則SKIPIF1<0,整理得SKIPIF1<0,同理可得SKIPIF1<0.聯(lián)立方程SKIPIF1<0可得點(diǎn)P的坐標(biāo)為SKIPIF1<0,即SKIPIF1<0.將點(diǎn)P的坐標(biāo)代入圓M的方程,得SKIPIF1<0,整理得SKIPIF1<0.由弦長(zhǎng)公式得SKIPIF1<0SKIPIF1<0.點(diǎn)P到直線SKIPIF1<0的距離為SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【整體點(diǎn)評(píng)】方法一利用兩點(diǎn)間距離公式求得SKIPIF1<0關(guān)于圓M上的點(diǎn)SKIPIF1<0的坐標(biāo)的表達(dá)式,進(jìn)一步轉(zhuǎn)化為關(guān)于SKIPIF1<0的表達(dá)式,利用二次函數(shù)的性質(zhì)得到最小值,進(jìn)而求得SKIPIF1<0的值;方法二,利用圓的性質(zhì),SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值,簡(jiǎn)潔明快,為最優(yōu)解;(2)方法一設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,利用導(dǎo)數(shù)求得兩切線方程,由切點(diǎn)弦方程思想得到直線SKIPIF1<0的坐標(biāo)滿(mǎn)足方程SKIPIF1<0,然手與拋物線方程聯(lián)立,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,利用弦長(zhǎng)公式求得SKIPIF1<0的長(zhǎng),進(jìn)而得到面積關(guān)于SKIPIF1<0坐標(biāo)的表達(dá)式,利用圓的方程轉(zhuǎn)化得到關(guān)于SKIPIF1<0的二次函數(shù)最值問(wèn)題;方法二,同方法一得到SKIPIF1<0,SKIPIF1<0,過(guò)P作y軸的平行線交SKIPIF1<0于Q,則SKIPIF1<0.由SKIPIF1<0求得面積關(guān)于SKIPIF1<0坐標(biāo)的表達(dá)式,并利用三角函數(shù)換元求得面積最大值,方法靈活,計(jì)算簡(jiǎn)潔,為最優(yōu)解;方法三直接設(shè)直線SKIPIF1<0,聯(lián)立直線SKIPIF1<0和拋物線方程,利用韋達(dá)定理判別式得到SKIPIF1<0,且SKIPIF1<0.利用點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,求得SKIPIF1<0的關(guān)系,然后利用導(dǎo)數(shù)求得兩切線方程,解方程組求得P的坐標(biāo)SKIPIF1<0,進(jìn)而利用弦長(zhǎng)公式和點(diǎn)到直線距離公式求得面積關(guān)于SKIPIF1<0的函數(shù)表達(dá)式,然后利用二次函數(shù)的性質(zhì)求得最大值.典例12.(2023春·北京·高三北京市八一中學(xué)??奸_(kāi)學(xué)考試)已知橢圓SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,其右焦點(diǎn)為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0為橢圓SKIPIF1<0上一動(dòng)點(diǎn)(不在SKIPIF1<0軸上),SKIPIF1<0為SKIPIF1<0中點(diǎn),過(guò)原點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線,與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0.問(wèn)SKIPIF1<0能否為定值,使得SKIPIF1<0?若是定值,求出該SKIPIF1<0值;若不是定值,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0能為定值,使得SKIPIF1<0,SKIPIF1<0.【分析】(1)根據(jù)題意得SKIPIF1<0,再結(jié)合SKIPIF1<0即可得答案;(2)設(shè)SKIPIF1<0,進(jìn)而得SKIPIF1<0,SKIPIF1<0,再計(jì)算斜率即可得SKIPIF1<0,最后結(jié)合SKIPIF1<0即可得答案.【詳解】(1)解:因?yàn)闄E圓SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,其右焦點(diǎn)為SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以橢圓方程為SKIPIF1<0(2)解:設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以過(guò)原點(diǎn)SKIPIF1<0與SKIPIF1<0的平行的線的方程為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,假設(shè)存在SKIPIF1<0能為定值,使得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0所以SKIPIF1<0能為定值,使得SKIPIF1<0,SKIPIF1<0.05函數(shù)與導(dǎo)數(shù)【核心提示】1.證明不等式2.不等式恒、能成立(存在性)問(wèn)題3.判斷函數(shù)零點(diǎn)個(gè)數(shù)4.根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的值(范圍)【典例分析】典例13.(2022·全國(guó)·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求a的取值范圍;(2)證明:若SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,則SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)的解析【分析】(1)由導(dǎo)數(shù)確定函數(shù)單調(diào)性及最值,即可得解;(2)利用分析法,轉(zhuǎn)化要證明條件為SKIPIF1<0,再利用導(dǎo)數(shù)即可得證.【詳解】(1)[方法一]:常規(guī)求導(dǎo)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0當(dāng)SKIPIF1<0單調(diào)遞減當(dāng)SKIPIF1<0單調(diào)遞增SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0的取值范圍為SKIPIF1<0[方法二]:同構(gòu)處理由SKIPIF1<0得:SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)故SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0的取值范圍為SKIPIF1<0(2)[方法一]:構(gòu)造函數(shù)由題知,SKIPIF1<0一個(gè)零點(diǎn)小于1,一個(gè)零點(diǎn)大于1,不妨設(shè)SKIPIF1<0要證SKIPIF1<0,即證SKIPIF1<0因?yàn)镾KIPIF1<0,即證SKIPIF1<0又因?yàn)镾KIPIF1<0,故只需證SKIPIF1<0即證SKIPIF1<0即證SKIPIF1<0下面證明SKIPIF1<0時(shí),SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0所以SKIPIF1<0,而SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增即SKIPIF1<0,所以SKIPIF1<0令SKIPIF1<0SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減即SKIPIF1<0,所以SKIPIF1<0;綜上,SKIPIF1<0,所以SKIPIF1<0.[方法二]:對(duì)數(shù)平均不等式由題意得:SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0只有1個(gè)解又因?yàn)镾KIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,故SKIPIF1<0兩邊取對(duì)數(shù)得:SKIPIF1<0,即SKIPIF1<0又因?yàn)镾KIPIF1<0,故SKIPIF1<0,即SKIPIF1<0下證SKIPIF1<0因?yàn)镾KIPIF1<0不妨設(shè)SKIPIF1<0,則只需證SKIPIF1<0構(gòu)造SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減故SKIPIF1<0,即SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論