版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
試卷第=page11頁(yè),共=sectionpages33頁(yè)專(zhuān)題23導(dǎo)數(shù)的綜合問(wèn)題(單選+填空)一、單選題1.(2023秋·湖北·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域都為SKIPIF1<0,且SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則下列說(shuō)法正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的奇偶性對(duì)稱(chēng)性可得函數(shù)的周期性以及SKIPIF1<0,再利用復(fù)合函數(shù)的導(dǎo)數(shù)推出SKIPIF1<0的周期以及SKIPIF1<0,進(jìn)而可求解.【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,即函數(shù)圖象關(guān)于SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0,因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,即函數(shù)圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以函數(shù)以4為周期,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0以4為周期,所以SKIPIF1<0,所以SKIPIF1<0,C正確,對(duì)于其余選項(xiàng),根據(jù)題意可假設(shè)SKIPIF1<0滿足周期為4,且關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),SKIPIF1<0,故A錯(cuò)誤;SKIPIF1<0,B錯(cuò)誤;SKIPIF1<0,D錯(cuò)誤,故選:C.2.(2023·江蘇泰州·統(tǒng)考一模)若過(guò)點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)切點(diǎn)SKIPIF1<0,根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程,再根據(jù)切線過(guò)點(diǎn)SKIPIF1<0,結(jié)合韋達(dá)定理可得SKIPIF1<0的關(guān)系,進(jìn)而可得SKIPIF1<0的關(guān)系,再利用導(dǎo)數(shù)即可得出答案.【詳解】設(shè)切點(diǎn)SKIPIF1<0,則切線方程為SKIPIF1<0,又切線過(guò)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0有兩個(gè)不相等實(shí)根SKIPIF1<0,其中SKIPIF1<0或SKIPIF1<0,SKIPIF1<0令SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:D.3.(2023春·廣東惠州·高三??茧A段練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】因?yàn)椴坏仁絊KIPIF1<0等價(jià)于SKIPIF1<0,故考慮構(gòu)造函數(shù)SKIPIF1<0,結(jié)合已知條件證明其單調(diào)性,結(jié)合單調(diào)性解不等式即可.【詳解】令SKIPIF1<0,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0所以,SKIPIF1<0故SKIPIF1<0故SKIPIF1<0在R上單調(diào)遞減,又因?yàn)镾KIPIF1<0所以,SKIPIF1<0,所以不等式SKIPIF1<0可化為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0故選:B.4.(2023·重慶沙坪壩·高三重慶八中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若對(duì)于定義域內(nèi)的任意實(shí)數(shù)s,總存在實(shí)數(shù)t使得SKIPIF1<0,則實(shí)數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)已知條件將問(wèn)題轉(zhuǎn)化為求函數(shù)沒(méi)有最小值問(wèn)題,利用導(dǎo)數(shù)法求函數(shù)的最值的步驟,但要注意對(duì)參數(shù)SKIPIF1<0進(jìn)行分類(lèi)討論即可求解.【詳解】由題意可知,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)閷?duì)于定義域內(nèi)的任意實(shí)數(shù)s,總存在實(shí)數(shù)t使得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上沒(méi)有最小值,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0,值域?yàn)镾KIPIF1<0,SKIPIF1<0在SKIPIF1<0內(nèi)無(wú)最小值,因此SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0,顯然SKIPIF1<0,即SKIPIF1<0,在同一坐標(biāo)系內(nèi)作出直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象,如圖所示當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有兩個(gè)根SKIPIF1<0,不妨設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0在SKIPIF1<0與SKIPIF1<0處都取得極小值,SKIPIF1<0,不符合題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)取到等號(hào),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值為SKIPIF1<0,不符合題意,綜上所述,實(shí)數(shù)a的取值范圍為SKIPIF1<0故選:D.【點(diǎn)睛】解決本題的關(guān)鍵是將問(wèn)題轉(zhuǎn)化為求函數(shù)SKIPIF1<0沒(méi)有最小值,利用導(dǎo)數(shù)法求函數(shù)的最值步驟,但在研究SKIPIF1<0與SKIPIF1<0的大小關(guān)系時(shí),借住函數(shù)的圖象,得出對(duì)SKIPIF1<0分SKIPIF1<0和SKIPIF1<0兩種情況討論即可求解.5.(2023春·江蘇南京·高三南京師大附中校考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用多次求導(dǎo)的方法,列不等式來(lái)求得SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0遞減;在區(qū)間SKIPIF1<0遞增.要使SKIPIF1<0有兩個(gè)極值點(diǎn),則SKIPIF1<0,此時(shí)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以實(shí)數(shù)a的取值范圍SKIPIF1<0.故選:D【點(diǎn)睛】利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),當(dāng)一次求導(dǎo)無(wú)法求得函數(shù)的單調(diào)性時(shí),可利用二次求導(dǎo)的方法來(lái)進(jìn)行求解.在求解的過(guò)程中,要注意原函數(shù)和導(dǎo)函數(shù)間的對(duì)應(yīng)關(guān)系.6.(2023·福建漳州·統(tǒng)考三模)已知函數(shù)SKIPIF1<0和函數(shù)SKIPIF1<0,具有相同的零點(diǎn)SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)零點(diǎn)定義可整理得到SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù),結(jié)合零點(diǎn)存在定理的知識(shí)可確定SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,并得到SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可確定SKIPIF1<0,由此化簡(jiǎn)所求式子即可得到結(jié)果.【詳解】由題意知:SKIPIF1<0,SKIPIF1<0,聯(lián)立兩式可得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查函數(shù)零點(diǎn)、利用導(dǎo)數(shù)求解函數(shù)單調(diào)性的相關(guān)問(wèn)題;解題關(guān)鍵是能夠靈活應(yīng)用零點(diǎn)存在定理確定導(dǎo)函數(shù)的正負(fù),并得到隱零點(diǎn)所滿足的等量關(guān)系式,進(jìn)而利用等量關(guān)系式化簡(jiǎn)最值和所求式子.7.(2023·湖南·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0(e是自然對(duì)數(shù)的底數(shù)),若存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0,得到SKIPIF1<0,再研究函數(shù)SKIPIF1<0的單調(diào)性,得到SKIPIF1<0,將SKIPIF1<0表示出來(lái),然后利用換元法轉(zhuǎn)化為二次函數(shù)求最值即可.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,SKIPIF1<0在SKIPIF1<0處取得最小值SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A【點(diǎn)睛】方法點(diǎn)睛:對(duì)于利用導(dǎo)數(shù)研究函數(shù)的綜合問(wèn)題的求解策略:1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.3、根據(jù)恒成立或有解求解參數(shù)的取值時(shí),一般涉及分離參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點(diǎn)的情況,進(jìn)行求解,若參變分離不易求解問(wèn)題,就要考慮利用分類(lèi)討論法和放縮法,注意恒成立與存在性問(wèn)題的區(qū)別.8.(2023·湖南邵陽(yáng)·統(tǒng)考二模)若不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則正實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意得SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0恒成立,利用SKIPIF1<0的單調(diào)性可得SKIPIF1<0在SKIPIF1<0時(shí)恒成立,即SKIPIF1<0恒成立,構(gòu)造函數(shù)SKIPIF1<0,由其單調(diào)性得SKIPIF1<0,即可得出答案.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0恒成立.令SKIPIF1<0,則SKIPIF1<0恒成立.因?yàn)镾KIPIF1<0恒成立,故SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0時(shí)恒成立,∴SKIPIF1<0恒成立.令SKIPIF1<0,SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0∴SKIPIF1<0單調(diào)遞減.∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0單調(diào)遞減,故SKIPIF1<0.則正實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.【點(diǎn)睛】方法點(diǎn)睛:不等式恒成立問(wèn)題常見(jiàn)方法:①分離參數(shù)法:分離出函數(shù)中的參數(shù),問(wèn)題轉(zhuǎn)化為求新函數(shù)的最值或范圍.若SKIPIF1<0恒成立,則SKIPIF1<0;若SKIPIF1<0恒成立,則SKIPIF1<0;②最值法:通過(guò)對(duì)函數(shù)最值的討論得出結(jié)果.若SKIPIF1<0恒成立,則SKIPIF1<0;若SKIPIF1<0恒成立,則SKIPIF1<0;③分段討論法:對(duì)變量SKIPIF1<0進(jìn)行分段討論,然后再綜合處理.9.(2023春·廣東·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,直線SKIPIF1<0,若有且僅有一個(gè)整數(shù)SKIPIF1<0,使得點(diǎn)SKIPIF1<0在直線l上方,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由定義域得SKIPIF1<0為正整數(shù),由導(dǎo)數(shù)法研究SKIPIF1<0的圖象,直線l過(guò)定點(diǎn)SKIPIF1<0,由數(shù)形結(jié)合可判斷SKIPIF1<0的值,進(jìn)而列不等式組確定參數(shù)范圍.【詳解】點(diǎn)SKIPIF1<0在直線l上方,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0有且僅有一個(gè)正整數(shù)解.設(shè)SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0.又SKIPIF1<0,故可得SKIPIF1<0圖象如下圖,直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0有無(wú)數(shù)個(gè)正整數(shù)解,不合題意,故SKIPIF1<0,又SKIPIF1<0有且僅有一個(gè)正整數(shù)解,故2是唯一的正整數(shù)解,即SKIPIF1<0.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:直線l過(guò)定點(diǎn),則原命題可轉(zhuǎn)化為直線l繞定點(diǎn)旋轉(zhuǎn),從而滿足條件,可由導(dǎo)數(shù)法研究SKIPIF1<0的圖象,由數(shù)形結(jié)合列式求解.10.(2023·廣東湛江·統(tǒng)考一模)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為R,且SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.13 B.16 C.25 D.51【答案】C【分析】根據(jù)題意利用賦值法求出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的值,推出函數(shù)SKIPIF1<0的周期,結(jié)合SKIPIF1<0,每四個(gè)值為一個(gè)循環(huán),即可求得答案.【詳解】由SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0為奇函數(shù),得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0①.又SKIPIF1<0②,由①和②得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,③令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0.又SKIPIF1<0④,由③-④得SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0是以8為周期的周期函數(shù),故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:C.【點(diǎn)睛】方法點(diǎn)睛:解決此類(lèi)抽象函數(shù)的求值問(wèn)題時(shí),涉及到函數(shù)的性質(zhì),比如奇偶性和對(duì)稱(chēng)軸以及周期性等問(wèn)題,綜合性較強(qiáng),有一定難度,解答時(shí)往往要采用賦值法求得某些特殊值,繼而推出函數(shù)滿足的性質(zhì),諸如對(duì)稱(chēng)性和周期性等,從而解決問(wèn)題.11.(2023秋·江蘇南京·高三南京市第一中學(xué)??计谀┰O(shè)SKIPIF1<0,函數(shù)SKIPIF1<0滿足SKIPIF1<0,則α落于區(qū)間(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意,確定函數(shù)的最大值,根據(jù)最值和極值的關(guān)系,可得方程,利用零點(diǎn)存在性定理,可得答案.【詳解】由題意,可知函數(shù)SKIPIF1<0在SKIPIF1<0上當(dāng)SKIPIF1<0時(shí)取得最大值,且SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)零點(diǎn)存在性定理,可知SKIPIF1<0,故選:C.二、填空題12.(2023春·浙江·高三開(kāi)學(xué)考試)已知定義在SKIPIF1<0上可導(dǎo)函數(shù)SKIPIF1<0,對(duì)于任意的實(shí)數(shù)x都有SKIPIF1<0成立,且當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0成立,若SKIPIF1<0,則實(shí)數(shù)m的取值范圍是__________.【答案】SKIPIF1<0【分析】構(gòu)造函數(shù)SKIPIF1<0,討論奇偶性和單調(diào)性,根據(jù)函數(shù)的單調(diào)性和奇偶性解不等式.【詳解】令SKIPIF1<0,則易得SKIPIF1<0,即SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0為偶函數(shù)得SKIPIF1<0,又在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故答案為:SKIPIF1<0.13.(2023秋·浙江杭州·高三期末)已知不等式SKIPIF1<0,對(duì)SKIPIF1<0恒成立,則a的取值范圍是__________.【答案】SKIPIF1<0【分析】根據(jù)已知得出SKIPIF1<0,對(duì)SKIPIF1<0恒成立,而在SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,將SKIPIF1<0化為SKIPIF1<0,令SKIPIF1<0,根據(jù)導(dǎo)數(shù)得出其單調(diào)性,則SKIPIF1<0可化為SKIPIF1<0,即可根據(jù)單調(diào)性得出SKIPIF1<0,令SKIPIF1<0,根據(jù)導(dǎo)數(shù)得出SKIPIF1<0,即可得出SKIPIF1<0,即可得出答案.【詳解】SKIPIF1<0,對(duì)SKIPIF1<0恒成立,則SKIPIF1<0,對(duì)SKIPIF1<0恒成立,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則要滿足SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0化為:SKIPIF1<0,兩邊乘SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0不等式SKIPIF1<0,對(duì)SKIPIF1<0恒成立,即SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0可化為:SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則根據(jù)單調(diào)性可得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,綜上SKIPIF1<0,故答案為SKIPIF1<0.14.(2023·江蘇連云港·統(tǒng)考模擬預(yù)測(cè))已知定義在R上的函數(shù)SKIPIF1<0,若SKIPIF1<0有解,則實(shí)數(shù)a的取值范圍是______________.【答案】SKIPIF1<0【分析】分析SKIPIF1<0的奇偶性和單調(diào)性,根據(jù)奇偶性和單調(diào)性求解.【詳解】SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),又SKIPIF1<0,SKIPIF1<0在R的范圍內(nèi)是增函數(shù),SKIPIF1<0有解等價(jià)于SKIPIF1<0,SKIPIF1<0有解,令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是增函數(shù),當(dāng)x趨于SKIPIF1<0時(shí),SKIPIF1<0趨于SKIPIF1<0,滿足題意;當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是增函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是減函數(shù),SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是增函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是減函數(shù),并且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足題意,所以a的取值范圍是SKIPIF1<0;故答案為:SKIPIF1<0.15.(2023·湖北武漢·統(tǒng)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0與SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)a=____________.【答案】4【分析】由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,根據(jù)SKIPIF1<0解方程即可求出結(jié)果.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0與SKIPIF1<0由SKIPIF1<0,則SKIPIF1<0有兩根SKIPIF1<0與SKIPIF1<0所以SKIPIF1<0,得SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<016.(2023·湖北·統(tǒng)考模擬預(yù)測(cè))函數(shù)SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0,則實(shí)數(shù)a的取值范圍為_(kāi)_________.【答案】SKIPIF1<0【分析】分SKIPIF1<0和SKIPIF1<0兩種情況討論,當(dāng)SKIPIF1<0時(shí),根據(jù)二次函數(shù)的圖象得到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),分SKIPIF1<0和SKIPIF1<0兩種情況討論,SKIPIF1<0時(shí),將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,然后借助函數(shù)的單調(diào)性和最值解不等式即可.【詳解】由題意知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合圖象知SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),顯然成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0.綜上,實(shí)數(shù)a的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.17.(2023春·湖南·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0在SKIPIF1<0上恒成立,則不等式SKIPIF1<0SKIPIF1<0的解集是____________.【答案】SKIPIF1<0【分析】構(gòu)造函數(shù)SKIPIF1<0,再將SKIPIF1<0SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0的單調(diào)性求解即可.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以不等式SKIPIF1<0SKIPIF1<0的解集是SKIPIF1<0.故答案為:SKIPIF1<0.18.(2023春·湖南長(zhǎng)沙·高三雅禮中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍__________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)法討論求解.【詳解】解:令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不符合題意;②SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上恒為負(fù),在區(qū)間SKIPIF1<0上恒為正,則需SKIPIF1<0在區(qū)間SKIPIF1<0上恒為負(fù),在區(qū)間SKIPIF1<0上恒為正,因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則需SKIPIF1<0,此時(shí)SKIPIF1<0,符合題意;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上恒為負(fù),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0在SKIPIF1<0時(shí)取得極大值也是最大值,SKIPIF1<0,解得SKIPIF1<0.所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<019.(2023·廣東茂名·統(tǒng)考一模)e是自然對(duì)數(shù)的底數(shù),SKIPIF1<0的零點(diǎn)為_(kāi)_____.【答案】SKIPIF1<0##SKIPIF1<0【分析】只用求方程SKIPIF1<0的零點(diǎn),討論左右兩個(gè)函數(shù)的最值即可求解.【詳解】由SKIPIF1<0得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,取等號(hào),令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0;令SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以要使SKIPIF1<0,只能SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0零點(diǎn)為SKIPIF1<0,故答案為:SKIPIF1<0.20.(2023·廣東湛江·統(tǒng)考一模)若函數(shù)SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】求導(dǎo)得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得答案.【詳解】SKIPIF1<0,定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0;又SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了函數(shù)的極值點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中利用消元的思想解方程是解題的關(guān)鍵.21.(2023春·浙江·高三校聯(lián)考開(kāi)學(xué)考試)已知曲線SKIPIF1<0與SKIPIF1<0的兩條公切線的夾角正切值為SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【分析】由兩曲線互為反函數(shù),結(jié)合反函數(shù)性質(zhì)及正切函數(shù)倍角公式,可求得兩條公切線的夾角一半的正切值,即可求得直線AD的斜率.設(shè)點(diǎn)A的橫坐標(biāo)為SKIPIF1<0,切點(diǎn)D的橫坐標(biāo)為SKIPIF1<0,由導(dǎo)數(shù)法分別就A、D兩點(diǎn)求同一條切線方程,從而建立方程,化簡(jiǎn)求值.【詳解】SKIPIF1<0與SKIPIF1<0互為反函數(shù),圖像關(guān)于直線SKIPIF1<0對(duì)稱(chēng),如圖所示,由題意,兩條公切線的夾角正切值為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0為銳角,所以SKIPIF1<0.由對(duì)稱(chēng)性,不妨取AD直線進(jìn)行研究,則直線AD的傾斜角SKIPIF1<0,SKIPIF1<0.設(shè)點(diǎn)A的橫坐標(biāo)為SKIPIF1<0,切點(diǎn)D的橫坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.∴SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:公切線問(wèn)題,一般可在兩曲線上設(shè)出切點(diǎn),分別求出切線,利用兩切線為同一條切線得出方程,從而進(jìn)一步求解.22.(2023秋·江蘇蘇州·高三統(tǒng)考期末)若對(duì)任意SKIPIF1<0,關(guān)于x的不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的最大值為_(kāi)_______.【答案】SKIPIF1<0##0.75【分析】不等式化為SKIPIF1<0恒成立,由于SKIPIF1<0都是任意實(shí)數(shù),因此不等式右邊相當(dāng)于兩個(gè)函數(shù)相加:SKIPIF1<0和SKIPIF1<0,后者設(shè)SKIPIF1<0,由導(dǎo)數(shù)求得其最小值,前者由二次函數(shù)性質(zhì)得最小值,兩者相加即得最小值,從而得SKIPIF1<0的范圍,得出結(jié)論.【詳解】原不等式化為SKIPIF1<0恒成立,由于SKIPIF1<0是任意實(shí)數(shù),SKIPIF1<0也是任意實(shí)數(shù),∴SKIPIF1<0與SKIPIF1<0是任意實(shí)數(shù),它們之間沒(méi)有任何影響,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0的最小值是1,所以SKIPIF1<0的最小值是SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0的最大值是SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:不等式恒成立求參數(shù)范圍問(wèn)題,一般可采用分離參數(shù)法轉(zhuǎn)化為求函數(shù)的最值,本題分離參數(shù)后,關(guān)鍵是對(duì)變量的理解,本題中由于SKIPIF1<0都是任意實(shí)數(shù),因此題中SKIPIF1<0與SKIPIF1<0可以看作是兩個(gè)不同的變量,因此不等式右邊轉(zhuǎn)化為兩個(gè)函數(shù)的和,分別求出其最小值后得出結(jié)論.23.(2023秋·河北唐山·高三統(tǒng)考期末)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【分析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不合題意;若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可證得SKIPIF1<0,SKIPIF1<0,滿足題意.【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,有SKIPIF1<0.SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0.則當(dāng)SKIPIF1<0時(shí),不滿足SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0,可得SKIPIF1<0所以若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0若SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0所以若SKIPIF1<0,SKIPIF1<0.綜上可得:若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.則SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:1.導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,?;癁椴坏仁胶愠闪?wèn)題.注意分類(lèi)討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問(wèn)題處理.2.利用導(dǎo)數(shù)解決含參函數(shù)的單調(diào)性問(wèn)題時(shí),一般將其轉(zhuǎn)化為不等式恒成立問(wèn)題,解題過(guò)程中要注意分類(lèi)討論和數(shù)形結(jié)合思想的應(yīng)用.3..證明不等式,構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效.24.(2023春·河北邢臺(tái)·高三邢臺(tái)市第二中學(xué)??茧A段練習(xí))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù)),則SKIPIF1<0的最小值是_________.【答案】SKIPIF1<0##SKIPIF1<0【分析】變形給定不等式,構(gòu)造函數(shù)并借助函數(shù)的單調(diào)性,求出SKIPIF1<0的關(guān)系,再利用導(dǎo)數(shù)求出函數(shù)的最值作答.【詳解】SKIPIF1<0,令函數(shù)SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),依題意,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)睛:涉及不等式恒成立問(wèn)題,將給定不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用導(dǎo)數(shù)探求函數(shù)單調(diào)性、最值是解決問(wèn)題的關(guān)鍵.25.(2023·福建泉州·統(tǒng)考三模)已知函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為_(kāi)__________.【答案】SKIPIF1<0【分析】零點(diǎn)問(wèn)題可以轉(zhuǎn)為為圖像交點(diǎn)問(wèn)題,然后討論a的取值范圍即可.【詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度愛(ài)奇藝體育賽事賽事直播內(nèi)容制作合同:股票投資回報(bào)保障協(xié)議3篇
- 二零二五年度環(huán)保型渣土運(yùn)輸船租賃合同3篇
- 二零二五年電子商務(wù)平臺(tái)運(yùn)營(yíng)咨詢(xún)合同2篇
- 二零二五年度桉樹(shù)木材加工節(jié)能減排合同3篇
- 二零二五版醫(yī)療扶貧公益項(xiàng)目合同3篇
- 二零二五版股份收購(gòu)項(xiàng)目風(fēng)險(xiǎn)評(píng)估及控制合同3篇
- 二零二五版生態(tài)旅游區(qū)建設(shè)項(xiàng)目招標(biāo)合同及生態(tài)保護(hù)協(xié)議3篇
- 二零二五版數(shù)據(jù)中心電梯緊急搶修及日常維護(hù)合同3篇
- 二零二五年度房產(chǎn)交易居間服務(wù)合同12篇
- 二零二五版國(guó)際農(nóng)業(yè)勞務(wù)輸出與管理合同3篇
- 購(gòu)銷(xiāo)合同電子版完整版
- 福建省福州市延安中學(xué)2023-2024學(xué)年八年級(jí)上學(xué)期期末物理模擬試卷+
- 2024年度醫(yī)院肝膽外科實(shí)習(xí)生帶教計(jì)劃課件
- 微機(jī)原理與接口技術(shù)考試試題及答案(綜合-必看)
- 勞務(wù)投標(biāo)技術(shù)標(biāo)
- 研發(fā)管理咨詢(xún)項(xiàng)目建議書(shū)
- 轉(zhuǎn)錢(qián)委托書(shū)授權(quán)書(shū)范本
- 一種配網(wǎng)高空作業(yè)智能安全帶及預(yù)警系統(tǒng)的制作方法
- 某墓園物業(yè)管理日常管護(hù)投標(biāo)方案
- 蘇教版六年級(jí)數(shù)學(xué)上冊(cè)集體備課記載表
- 內(nèi)蒙古匯能煤電集團(tuán)有限公司長(zhǎng)灘露天煤礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
評(píng)論
0/150
提交評(píng)論