新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題15 圓錐曲線綜合問題(單選+填空)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題15 圓錐曲線綜合問題(單選+填空)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題15 圓錐曲線綜合問題(單選+填空)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題15 圓錐曲線綜合問題(單選+填空)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題15 圓錐曲線綜合問題(單選+填空)(解析版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

試卷第=page11頁,共=sectionpages33頁專題15圓錐曲線綜合問題(單選+填空)一、單選題1.(2023·江蘇南通·統(tǒng)考模擬預(yù)測)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線上,且SKIPIF1<0,若SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0(

)A.2 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)拋物線定義求得SKIPIF1<0點(diǎn)橫坐標(biāo),代入拋物線方程得縱坐標(biāo),再利用三角形面積公式即可得SKIPIF1<0的值.【詳解】拋物線的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線上,由拋物線的定義可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍).故選:B.2.(2023秋·浙江紹興·高三統(tǒng)考期末)若橢圓SKIPIF1<0的左焦點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0對稱的點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,則橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,由題意求出SKIPIF1<0,代入橢圓SKIPIF1<0的方程得,SKIPIF1<0,化簡即可得出答案.【詳解】設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,則由題意可得:SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0,代入橢圓SKIPIF1<0的方程得,SKIPIF1<0.又SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以離心率為SKIPIF1<0.故選:C.3.(2023春·湖南長沙·高三長郡中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的兩個焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的離心率為SKIPIF1<0,則SKIPIF1<0的值為(

)A.3 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】A【分析】根據(jù)雙曲線的定義及條件,表示出SKIPIF1<0,結(jié)合余弦定理可得答案.【詳解】因為SKIPIF1<0,由雙曲線的定義可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;因為SKIPIF1<0,由余弦定理可得SKIPIF1<0,整理可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又因為SKIPIF1<0,即SKIPIF1<0.故選:A4.(2023春·湖北·高三統(tǒng)考階段練習(xí))如圖所示,SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),雙曲線SKIPIF1<0的右支上存在一點(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0與雙曲線SKIPIF1<0的左支的交點(diǎn)A平分線段SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,由雙曲線的定義可求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,利用勾股定理求得SKIPIF1<0,在SKIPIF1<0中利用勾股定理即可求得SKIPIF1<0的關(guān)系式,從而求得答案.【詳解】設(shè)SKIPIF1<0,由雙曲線的定義得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得SKIPIF1<0,整理得SKIPIF1<0,即雙曲線SKIPIF1<0的離心率SKIPIF1<0,故選:C.5.(2023秋·江蘇無錫·高三統(tǒng)考期末)雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線與雙曲線左、右兩支分別交于點(diǎn)P,Q,若SKIPIF1<0,M為PQ的中點(diǎn),且SKIPIF1<0,則雙曲線的離心率為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【分析】由SKIPIF1<0得出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中利用勾股定理得出離心率.【詳解】解:M為PQ中點(diǎn),SKIPIF1<0,∴SKIPIF1<0等腰三角形.令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:C.6.(2023秋·江蘇蘇州·高三統(tǒng)考期末)在平面直角坐標(biāo)系SKIPIF1<0中,已知雙曲線C:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左頂點(diǎn)為SKIPIF1<0,右焦點(diǎn)為F,過點(diǎn)F作C的一條漸近線的垂線,垂足為P,過點(diǎn)P作x軸的垂線,垂足為Q.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【分析】不妨設(shè)漸近線方程為SKIPIF1<0,計算SKIPIF1<0點(diǎn)坐標(biāo)得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)等差數(shù)列性質(zhì)得到SKIPIF1<0,解得答案.【詳解】SKIPIF1<0,SKIPIF1<0,不妨設(shè)漸近線方程為SKIPIF1<0,則直線SKIPIF1<0為:SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,故SKIPIF1<0,整理得到SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍).故選:B7.(2023·山東日照·統(tǒng)考一模)已知橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0內(nèi)一點(diǎn),點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0:SKIPIF1<0上,若橢圓上存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先求出橢圓左焦點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,由題得SKIPIF1<0,解不等式得到SKIPIF1<0,再解不等式SKIPIF1<0即得解.【詳解】點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0:SKIPIF1<0上,所以SKIPIF1<0.所以橢圓左焦點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0內(nèi)一點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.綜上:SKIPIF1<0.故選:A8.(2023·山東威海·統(tǒng)考一模)已知雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,M為C上一點(diǎn),M關(guān)于原點(diǎn)的對稱點(diǎn)為N,若SKIPIF1<0,且SKIPIF1<0,則C的漸近線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由對稱性知四邊形SKIPIF1<0為平行四邊形,可求得SKIPIF1<0及SKIPIF1<0,在SKIPIF1<0中,由余弦定理建立SKIPIF1<0的關(guān)系,從而求得漸近線方程.【詳解】如圖所示,不妨設(shè)SKIPIF1<0在左支,設(shè)右焦點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,由對稱性知四邊形SKIPIF1<0為平行四邊形,由SKIPIF1<0得SKIPIF1<0,由雙曲線定義知:SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0中,由余弦定理得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則C的漸近線方程為SKIPIF1<0.故選:D【點(diǎn)睛】求雙曲線的漸近線就是求SKIPIF1<0與SKIPIF1<0的關(guān)系,通過可通過幾何關(guān)系或代數(shù)式建立關(guān)于SKIPIF1<0的一個齊次等式,求解SKIPIF1<0均可得到漸近線方程.幾何關(guān)系通過用到平面幾何中的有關(guān)知識建立關(guān)系,甚至平面向量、正弦定理、余弦定理都可以用來建立關(guān)系式.9.(2023春·湖北·高三統(tǒng)考階段練習(xí))已知雙曲線SKIPIF1<0為雙曲線的右焦點(diǎn),過點(diǎn)SKIPIF1<0作漸近線的垂線SKIPIF1<0,垂足為SKIPIF1<0,交另一條漸近線于SKIPIF1<0,若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0列式,根據(jù)SKIPIF1<0的取值范圍求得SKIPIF1<0的取值范圍,進(jìn)而求得離心率的取值范圍.【詳解】依題意可知SKIPIF1<0在第一象限,SKIPIF1<0在第二象限,SKIPIF1<0到漸近線SKIPIF1<0的距離為SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C10.(2023·湖南邵陽·統(tǒng)考二模)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,半焦距為SKIPIF1<0.在橢圓上存在點(diǎn)SKIPIF1<0使得SKIPIF1<0,則橢圓離心率的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由正弦定理及橢圓定義得SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0,得關(guān)于SKIPIF1<0的不等式,從而求出SKIPIF1<0的范圍.【詳解】由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.故選:B.11.(2023·江蘇南通·校聯(lián)考模擬預(yù)測)如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉(zhuǎn)形成的曲面)反射器和位于焦點(diǎn)上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應(yīng)用于微波和衛(wèi)星通訊等領(lǐng)域,具有結(jié)構(gòu)簡單、方向性強(qiáng)、工作頻帶寬等特點(diǎn).圖2是圖1的軸截面,A,B兩點(diǎn)關(guān)于拋物線的對稱軸對稱,F(xiàn)是拋物線的焦點(diǎn),∠AFB是饋源的方向角,記為SKIPIF1<0,焦點(diǎn)F到頂點(diǎn)的距離f與口徑d的比值SKIPIF1<0稱為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.如果某拋物面天線饋源的方向角SKIPIF1<0滿足,SKIPIF1<0,則其焦徑比為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】建立直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入拋物線方程可得SKIPIF1<0,根據(jù)SKIPIF1<0,解得SKIPIF1<0與SKIPIF1<0的關(guān)系,即可得出SKIPIF1<0.【詳解】如圖所示,建立直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入拋物線方程可得:SKIPIF1<0,解得SKIPIF1<0,由于SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍)又SKIPIF1<0,化為:SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍)SKIPIF1<0SKIPIF1<0.故選:C.12.(2023·廣東廣州·統(tǒng)考一模)已知拋物線SKIPIF1<0的頂點(diǎn)為坐標(biāo)原點(diǎn)SKIPIF1<0,焦點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,過點(diǎn)SKIPIF1<0的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,則直線SKIPIF1<0的斜率的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【分析】根據(jù)給定條件,設(shè)出拋物線C及直線PQ的方程,借助垂直關(guān)系求出拋物線方程及點(diǎn)M的坐標(biāo),再用斜率坐標(biāo)公式建立函數(shù),利用均值不等式求解作答.【詳解】依題意,拋物線SKIPIF1<0的焦點(diǎn)在x軸的正半軸上,設(shè)SKIPIF1<0的方程為:SKIPIF1<0,顯然直線SKIPIF1<0不垂直于y軸,設(shè)直線PQ的方程為:SKIPIF1<0,點(diǎn)SKIPIF1<0,由SKIPIF1<0消去x得:SKIPIF1<0,則有SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,于是拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)SKIPIF1<0,弦SKIPIF1<0的中點(diǎn)SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,則點(diǎn)SKIPIF1<0,顯然直線SKIPIF1<0的斜率最大,必有SKIPIF1<0,則直線SKIPIF1<0的斜率SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以直線SKIPIF1<0的斜率的最大值為SKIPIF1<0.故選:A13.(2023春·廣東珠?!じ呷楹J械谝恢袑W(xué)??茧A段練習(xí))已知點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的右焦點(diǎn),過點(diǎn)F向C的一條漸近線引垂線垂足為A,交另一條漸近線于點(diǎn)B.若SKIPIF1<0,則雙曲線C的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)給定條件,利用點(diǎn)到直線距離公式、二倍角的余弦公式、勾股定理列式計算作答.【詳解】雙曲線SKIPIF1<0的漸近線方程為:SKIPIF1<0,不妨令點(diǎn)A在直線SKIPIF1<0上,SKIPIF1<0,如圖,因為SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0知,點(diǎn)SKIPIF1<0在y軸同側(cè),于是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,整理得:SKIPIF1<0,化簡得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0,SKIPIF1<0,雙曲線方程為SKIPIF1<0.故選:A14.(2023·浙江·模擬預(yù)測)已知橢圓SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0為橢圓上一點(diǎn),過P點(diǎn)作橢圓的切線l,PM垂直于直線l且與x軸交于點(diǎn)M,若M為SKIPIF1<0的中點(diǎn),則該橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由橢圓方程和切點(diǎn)坐標(biāo),寫出切線方程,得M點(diǎn)坐標(biāo),由M的位置,求得離心率.【詳解】因為SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),所以過P作橢圓的切線SKIPIF1<0,切線斜率SKIPIF1<0,所以PM的斜率SKIPIF1<0,直線PM的方程為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,由題SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:C.15.(2023·江蘇宿遷·江蘇省沭陽高級中學(xué)??寄M預(yù)測)橢圓具有光學(xué)性質(zhì):從橢圓的一個焦點(diǎn)發(fā)出的光線,經(jīng)過橢圓反射后,反射光線過橢圓的另一個焦點(diǎn)(如圖).已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,過SKIPIF1<0的直線與橢圓E交與點(diǎn)A,B,過點(diǎn)A作橢圓的切線l,點(diǎn)B關(guān)于l的對稱點(diǎn)為M,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】結(jié)合題目所給信息及圖形可得SKIPIF1<0,后由橢圓定義及條件可得SKIPIF1<0,SKIPIF1<0.最后由SKIPIF1<0SKIPIF1<0可得答案.【詳解】如圖,由橢圓的光學(xué)性質(zhì)可得SKIPIF1<0三點(diǎn)共線.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0,解得SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0.故選:A.16.(2023春·湖北·高三統(tǒng)考階段練習(xí))如圖,SKIPIF1<0為雙曲線的左右焦點(diǎn),過SKIPIF1<0的直線交雙曲線于SKIPIF1<0兩點(diǎn),SKIPIF1<0為線段的SKIPIF1<0中點(diǎn),若對于線段SKIPIF1<0上的任意點(diǎn)SKIPIF1<0,都有SKIPIF1<0成立,且SKIPIF1<0內(nèi)切圓的圓心在直線SKIPIF1<0上.則雙曲線的離心率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】D【分析】由SKIPIF1<0可得SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0.又由SKIPIF1<0內(nèi)切圓的圓心在直線SKIPIF1<0上,可得SKIPIF1<0,據(jù)此可得答案.【詳解】如圖1,取SKIPIF1<0中點(diǎn)為Q,連接EQ,PQ.則SKIPIF1<0,SKIPIF1<0.因SKIPIF1<0,則SKIPIF1<0,因直線外一點(diǎn)到直線連線中垂線段最短,則SKIPIF1<0為SKIPIF1<0垂線.因Q為SKIPIF1<0中點(diǎn),E為SKIPIF1<0中點(diǎn),則SKIPIF1<0,得SKIPIF1<0.又DO為直角三角形斜邊SKIPIF1<0中線,則SKIPIF1<0.如圖2,設(shè)SKIPIF1<0內(nèi)切圓的圓心為I,內(nèi)切圓與SKIPIF1<0交點(diǎn)為M,與SKIPIF1<0交點(diǎn)為T,與SKIPIF1<0交點(diǎn)為N.則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.又由切線性質(zhì),可知SKIPIF1<0,則SKIPIF1<0.則離心率為SKIPIF1<0.故選:D【點(diǎn)睛】結(jié)論點(diǎn)睛:本題涉及以下結(jié)論:(1)極化恒等式:SKIPIF1<0;(2)雙曲線焦點(diǎn)三角形的內(nèi)切圓圓心在直線SKIPIF1<0上.17.(2023·湖北·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0的左、右焦點(diǎn),過SKIPIF1<0的直線分別交雙曲線左、右兩支于A,B兩點(diǎn),點(diǎn)C在x軸上,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0可知SKIPIF1<0,再根據(jù)角平分線定理得到SKIPIF1<0的關(guān)系,再根據(jù)雙曲線定義分別把圖中所有線段用SKIPIF1<0表示出來,根據(jù)邊的關(guān)系利用余弦定理即可解出離心率.【詳解】因為SKIPIF1<0,所以SKIPIF1<0∽SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0平分SKIPIF1<0,由角平分線定理可知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由雙曲線定義知SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,①又由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0是等邊三角形,所以SKIPIF1<0.在SKIPIF1<0中,由余弦定理知SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0,把①代入上式得SKIPIF1<0,所以離心率為SKIPIF1<0.故選:A.18.(2023春·浙江溫州·高三統(tǒng)考開學(xué)考試)直線l與雙曲線SKIPIF1<0的左,右兩支分別交于點(diǎn)A,B,與雙曲線的兩條漸近線分別交于點(diǎn)C,D(A,C,D,B從左到右依次排列),若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則雙曲線的離心率的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先設(shè)直線方程及四個點(diǎn),聯(lián)立后分別求出兩根和和兩根積,再應(yīng)用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,列式求解即可【詳解】設(shè)SKIPIF1<0直線SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0①聯(lián)立SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0②因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0③因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即得SKIPIF1<0④因為SKIPIF1<0,所以SKIPIF1<0中點(diǎn)為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,因為SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,又因為A,C,D,B從左到右依次排列,所以SKIPIF1<0,所以SKIPIF1<0,代入①②③有SKIPIF1<0,因為SKIPIF1<0且SKIPIF1<0,又因為SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0綜上,SKIPIF1<0故選:D.19.(2023春·浙江寧波·高三校聯(lián)考階段練習(xí))已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0為橢圓上不與頂點(diǎn)重合的任意一點(diǎn),SKIPIF1<0為SKIPIF1<0的內(nèi)心,記直線SKIPIF1<0的斜率分別為SKIPIF1<0,若SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)SKIPIF1<0,設(shè)圓與SKIPIF1<0軸相切于點(diǎn)SKIPIF1<0,結(jié)合圓的切線長的性質(zhì)證明SKIPIF1<0,結(jié)合橢圓性質(zhì)可得SKIPIF1<0,由內(nèi)切圓性質(zhì)可得SKIPIF1<0,由條件確定SKIPIF1<0關(guān)系,由此可求離心率.【詳解】設(shè)SKIPIF1<0,設(shè)圓與SKIPIF1<0軸相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,過點(diǎn)SKIPIF1<0作直線SKIPIF1<0的垂線,垂足為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由三角形面積相等,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即得SKIPIF1<0.故選:B..【點(diǎn)睛】方法點(diǎn)睛:橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式SKIPIF1<0;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍).二、填空題20.(2023秋·浙江·高三期末)已知橢圓SKIPIF1<0,過橢圓左焦點(diǎn)F任作一條弦SKIPIF1<0(不與長軸重合),點(diǎn)A,B是橢圓的左右頂點(diǎn),設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,則SKIPIF1<0的最小值為_______.【答案】SKIPIF1<0【分析】設(shè)直線SKIPIF1<0,聯(lián)立直線與橢圓的方程由韋達(dá)定理代入求出SKIPIF1<0,再求出SKIPIF1<0,即可求出SKIPIF1<0,再由基本不等式即可求出SKIPIF1<0的最小值.【詳解】設(shè)直線SKIPIF1<0,聯(lián)立SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可求得SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0在橢圓上,所以SKIPIF1<0,即SKIPIF1<0,由橢圓SKIPIF1<0:SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,等號顯然可以取得,故最小值為SKIPIF1<0.故答案為:SKIPIF1<0.21.(2023·浙江嘉興·統(tǒng)考模擬預(yù)測)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線分別交兩條漸近線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的離心率為______.【答案】2【分析】設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,通過聯(lián)立方程組的方法求得SKIPIF1<0的坐標(biāo),進(jìn)而求得SKIPIF1<0中點(diǎn)SKIPIF1<0的坐標(biāo).對SKIPIF1<0進(jìn)行分類討論,由SKIPIF1<0化簡求得雙曲線SKIPIF1<0的離心率.【詳解】設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0的中點(diǎn)SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0(1)當(dāng)SKIPIF1<0時,SKIPIF1<0軸,此時SKIPIF1<0,SKIPIF1<0,又由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,這與SKIPIF1<0矛盾,不合題意,所以SKIPIF1<0(2)當(dāng)SKIPIF1<0時,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0得SKIPIF1<0SKIPIF1<0,化簡得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.由(1)(2)可知,雙曲線的離心率為2.故答案為:2【點(diǎn)睛】求解直線和直線、直線和圓錐曲線的交點(diǎn)的問題,可通過聯(lián)立方程組來進(jìn)行求解.求解雙曲線的離心率問題,有兩個思路,一個是求得SKIPIF1<0,從而求得雙曲線的離心率;另一個是求得SKIPIF1<0或SKIPIF1<0的關(guān)系式,由此來求得雙曲線的離心率.22.(2023春·江蘇南京·高三南京市第五高級中學(xué)??茧A段練習(xí))已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,若以SKIPIF1<0為圓心,b-c為半徑作圓SKIPIF1<0,過橢圓上一點(diǎn)P作此圓的切線.切點(diǎn)為T,且|PT|的最小值為SKIPIF1<0,則橢圓的離心率e的取值范圍是____________.【答案】SKIPIF1<0【分析】當(dāng)P點(diǎn)位于橢圓的右頂點(diǎn)的位置的時候,SKIPIF1<0最小值,且最小值為SKIPIF1<0=a-c,根據(jù)SKIPIF1<0最小值為SKIPIF1<0與SKIPIF1<0可得SKIPIF1<0,根據(jù)b>c易得SKIPIF1<0,結(jié)合兩式即可求解.【詳解】依題意,如圖所示:當(dāng)P點(diǎn)位于橢圓的右頂點(diǎn)的位置的時候,SKIPIF1<0最小值,且最小值為SKIPIF1<0=a-c.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,化為SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0.可得SKIPIF1<0.①∵b>c,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.②解得SKIPIF1<0.由①②解得SKIPIF1<0.故橢圓離心率的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.23.(2023·山東泰安·統(tǒng)考一模)已知雙曲線C:SKIPIF1<0的右頂點(diǎn)為A,以A為圓心,b為半徑的圓與雙曲線C的一條漸近線交于M,N兩點(diǎn),若SKIPIF1<0,則以SKIPIF1<0(e為雙曲線C的離心率)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為___________.【答案】SKIPIF1<0【分析】根據(jù)已知條件求得雙曲線的離心率,也即求得SKIPIF1<0,從而求得拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意,SKIPIF1<0,雙曲線的一條漸近線方程為SKIPIF1<0,依題意,三角形SKIPIF1<0是邊長為SKIPIF1<0的等邊三角形,所以SKIPIF1<0到SKIPIF1<0的距離是SKIPIF1<0,即SKIPIF1<0,所以對于拋物線SKIPIF1<0,有SKIPIF1<0,所以拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<024.(2023春·湖北·高三統(tǒng)考階段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線與該拋物線交于SKIPIF1<0兩點(diǎn),SKIPIF1<0的中點(diǎn)縱坐標(biāo)為SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0或SKIPIF1<0【分析】由題可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,與拋物線聯(lián)立可得交點(diǎn)坐標(biāo)關(guān)系,根據(jù)相交弦長公式及中點(diǎn)坐標(biāo)公式即可求得SKIPIF1<0的值.【詳解】拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,聯(lián)立SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,整理得:SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.25.(2023·湖北·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0為拋物線SKIPIF1<0上一點(diǎn),過點(diǎn)SKIPIF1<0的直線與拋物線C交于A,B兩點(diǎn),且直線SKIPIF1<0與SKIPIF1<0的傾斜角互補(bǔ),則SKIPIF1<0__________.【答案】2【分析】由題可得SKIPIF1<0,然后利用韋達(dá)定理法,兩點(diǎn)間距離公式結(jié)合條件即得.【詳解】由點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上得:SKIPIF1<0,即SKIPIF1<0,所以拋物線C的方程為:SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由直線SKIPIF1<0與SKIPIF1<0的傾斜角互補(bǔ)得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故答案為:2.26.(2023·湖南·湖南師大附中校聯(lián)考模擬預(yù)測)已知直線SKIPIF1<0,拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對稱的點(diǎn)為SKIPIF1<0.若過點(diǎn)SKIPIF1<0的圓與直線SKIPIF1<0相切,且與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,則當(dāng)SKIPIF1<0時,直線SKIPIF1<0的斜率為___________.【答案】SKIPIF1<0【分析】根據(jù)題意設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立拋物線方程,然后結(jié)合韋達(dá)定理即可得到結(jié)果.【詳解】如圖,易知過點(diǎn)SKIPIF1<0且與直線SKIPIF1<0相切的圓就是以SKIPIF1<0為直徑的圓,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0有SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,代入SKIPIF1<0有SKIPIF1<0,所以SKIPIF1<0,結(jié)合SKIPIF1<0,得SKIPIF1<0.故答案為:SKIPIF1<027.(2023秋·湖南湘潭·高三校聯(lián)考期末)已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0與雙曲線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0,以SKIPIF1<0為直徑的圓與SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則SKIPIF1<0__________.【答案】2【分析】根據(jù)直線與雙曲線的位置關(guān)系確定交點(diǎn)坐標(biāo)關(guān)系,利用直線和圓的幾何性質(zhì),即可求得SKIPIF1<0的長.【詳解】解:如圖,由題可知,SKIPIF1<0的坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0的坐標(biāo)為SKIPIF1<0.又以SKIPIF1<0為直徑的圓與SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故答案為:2.28.(2023·廣東茂名·統(tǒng)考一模)已知直線SKIPIF1<0與雙曲線SKIPIF1<0交于A,B兩點(diǎn)(A在B的上方),A為BD的中點(diǎn),過點(diǎn)A作直線與y軸垂直且交于點(diǎn)E,若SKIPIF1<0的內(nèi)心到y(tǒng)軸的距離不小于SKIPIF1<0,則雙曲線C的離心率取值范圍是______.【答案】SKIPIF1<0【分析】先求得SKIPIF1<0的坐標(biāo),根據(jù)三角形的內(nèi)心以及角平分線定理以及SKIPIF1<0的內(nèi)心SKIPIF1<0到SKIPIF1<0軸的距離SKIPIF1<0的范圍,求得SKIPIF1<0的取值范圍,進(jìn)而求得離心率SKIPIF1<0的取值范圍.【詳解】因為A在B的上方,且這兩點(diǎn)都在C上,所以SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論