版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河南省漯河市漯河實驗高中高三下學(xué)期一??荚嚁?shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若關(guān)于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.82.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2403.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.4.設(shè)是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.5.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.6.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.7.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.28.已知全集,則集合的子集個數(shù)為()A. B. C. D.9.已知命題:,,則為()A., B.,C., D.,10.設(shè)函數(shù),當(dāng)時,,則()A. B. C.1 D.11.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.12.若直線與曲線相切,則()A.3 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.14.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.15.已知定義在的函數(shù)滿足,且當(dāng)時,,則的解集為__________________.16.拋物線上到其焦點的距離為的點的個數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點,直線與圓相交于、兩點,求的值.18.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設(shè)P為橢圓上一點,且OM+ON=t20.(12分)已知函數(shù).⑴當(dāng)時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.21.(12分)的內(nèi)角的對邊分別為,若(1)求角的大?。?)若,求的周長22.(10分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時,,由于關(guān)于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時,,則不滿足題意;當(dāng)時,當(dāng)時,,沒有整數(shù)解當(dāng)時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.2、A【解析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點睛】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.3、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【點睛】本題考查對數(shù)的運算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.5、D【解析】
根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.6、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題7、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.8、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題9、C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.10、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.11、A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計算能力,屬于中檔題.對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.12、A【解析】
設(shè)切點為,對求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當(dāng)時,,不滿足對任意的正整數(shù)均有.所以.當(dāng)時,證明:對任意的正整數(shù)都有.當(dāng)時,成立.假設(shè)當(dāng)時結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結(jié)合參數(shù)的范圍問題進行分析.屬于難題.14、(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進行等價轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).15、【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價的不等式,可得解集.【詳解】因為定義在的函數(shù)滿足,所以函數(shù)是偶函數(shù),又當(dāng)時,,得時,,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價于,即或,解得或,所以不等式的解集為:.故答案為:.【點睛】本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.16、【解析】
設(shè)拋物線上任意一點的坐標(biāo)為,根據(jù)拋物線的定義求得,并求出對應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線上任意一點的坐標(biāo)為,拋物線的準(zhǔn)線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數(shù)為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標(biāo),考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1):,:;(2)【解析】
(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡后寫出韋達定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗點在直線上,可轉(zhuǎn)化為①,將①式代入圓的直角坐標(biāo)方程為得,化簡得,設(shè)是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點睛】本小題主要考查參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用直線參數(shù)的幾何意義求解距離問題,屬于中檔題.18、(1);(2)證明見解析【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.19、(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時,直線方程與橢圓方程聯(lián)立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標(biāo)準(zhǔn)方程為x2(2)由題意知,當(dāng)直線MN斜率存在時,設(shè)直線方程為y=k(x-1),M(x聯(lián)立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當(dāng)直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系.20、(1)當(dāng)時,函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導(dǎo)分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導(dǎo)討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當(dāng)時,,所以所以當(dāng)時,,當(dāng)時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當(dāng)時,函數(shù)取得極小值為,無極大值;(2)設(shè)函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設(shè),則不妨設(shè)則當(dāng)時,,當(dāng)時,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設(shè),則對恒成立,所以在區(qū)間上單調(diào)遞增,又所以當(dāng)時,即當(dāng)時,又當(dāng)時因此當(dāng)時,函數(shù)必有零點;即當(dāng)時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調(diào)遞減,因此所以實數(shù)的取值范圍是.21、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度短視頻平臺內(nèi)容創(chuàng)作委托合同范本3篇
- 二零二五年度夫妻房產(chǎn)分割與離婚財產(chǎn)清算協(xié)議3篇
- 2024木屑生物質(zhì)炭生產(chǎn)項目-原料采購及研發(fā)合作協(xié)議3篇
- 兩種電商合同實戰(zhàn)對比:2024版應(yīng)用案例分析一
- 2成都市2024年二手住宅買賣合同解讀
- 2025年度生態(tài)園林景觀苗木種植與生態(tài)環(huán)保工程承包合同3篇
- 二零二五年度股東借款合同違約責(zé)任明確化3篇
- 二零二五年度社區(qū)車庫車位租賃與增值服務(wù)協(xié)議3篇
- 2025年度采砂船運輸與港口作業(yè)協(xié)調(diào)合同范本3篇
- 2024版零售商品擺放專項合同版
- 中試部培訓(xùn)資料
- 北師大版數(shù)學(xué)三年級下冊豎式計算題100道
- 計算機網(wǎng)絡(luò)技術(shù)全套教學(xué)課件
- 【可行性報告】2024年第三方檢測相關(guān)項目可行性研究報告
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應(yīng)對措施
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(原卷版)
- 藏醫(yī)學(xué)專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓(xùn)
- 2023年浙江杭州師范大學(xué)附屬醫(yī)院招聘聘用人員考試真題
- 2024新版《藥品管理法》培訓(xùn)課件
- DB41T 2302-2022 人工影響天氣地面作業(yè)規(guī)程
評論
0/150
提交評論