新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì) 原卷版_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì) 原卷版_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì) 原卷版_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì) 原卷版_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì) 原卷版_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題13等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)【考點(diǎn)專題】1.?dāng)?shù)列的有關(guān)概念概念含義數(shù)列按照一定順序排列的一列數(shù)數(shù)列的項(xiàng)數(shù)列中的每一個(gè)數(shù)數(shù)列的通項(xiàng)數(shù)列{an}的第n項(xiàng)an通項(xiàng)公式如果數(shù)列{an}的第n項(xiàng)an與序號(hào)n之間的關(guān)系能用公式an=f(n)表示,這個(gè)公式叫做數(shù)列的通項(xiàng)公式前n項(xiàng)和數(shù)列{an}中,Sn=a1+a2+…+an叫做數(shù)列的前n項(xiàng)和2.?dāng)?shù)列的表示方法列表法列表格表示n與an的對(duì)應(yīng)關(guān)系圖象法把點(diǎn)(n,an)畫(huà)在平面直角坐標(biāo)系中公式法通項(xiàng)公式把數(shù)列的通項(xiàng)用公式表示遞推公式使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an,an-1)等表示數(shù)列的方法3.a(chǎn)n與Sn的關(guān)系若數(shù)列{an}的前n項(xiàng)和為Sn,則an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2.))4.?dāng)?shù)列的分類分類標(biāo)準(zhǔn)類型滿足條件項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限無(wú)窮數(shù)列項(xiàng)數(shù)無(wú)限項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N*遞減數(shù)列an+1<an常數(shù)列an+1=an5.等差數(shù)列的定義an-an-1=d(n≥2)6.等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d=am+(n-m)d.7.等差中項(xiàng)若a,b,c成等差數(shù)列,則2b=a+c.b叫做a與c的等差中項(xiàng).8.等差數(shù)列的下標(biāo)和公式若k+l=m+n,則ak+al=am+an.9.等差數(shù)列的前n項(xiàng)和公式Sn=eq\f(na1+an,2)或Sn=na1+eq\f(nn-1,2)d.10.等差數(shù)列的前n項(xiàng)和公式與函數(shù)的關(guān)系Sn=eq\f(d,2)n2+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n.數(shù)列{an}是等差數(shù)列?Sn=An2+Bn(A,B為常數(shù)).11.等差數(shù)列的常用性質(zhì)(1)數(shù)列Sm,S2m-Sm,S3m-S2m,…構(gòu)成等差數(shù)列.(2)若{an}是等差數(shù)列,則eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也是等差數(shù)列,其首項(xiàng)與{an}的首項(xiàng)相同,公差為eq\f(1,2)d.12.等差數(shù)列的前n項(xiàng)和的最值在等差數(shù)列{an}中,a1>0,d<0,則Sn存在最大值;若a1<0,d>0,則Sn存在最小值.13.等比數(shù)列的定義SKIPIF1<0=q(n≥2).14.等比數(shù)列的通項(xiàng)公式an=a1·qn-1=am·qn-m.15.等比中項(xiàng)若a,b,c成等比數(shù)列,則b2=a·c.b是a與c的等比中項(xiàng).16.等比數(shù)列的下標(biāo)和公式若m+n=p+q,則am·an=ap·aq.17.等比數(shù)列的前n項(xiàng)和公式Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1q=1,,\f(a11-qn,1-q)=\f(a1-anq,1-q)q≠1))18.等比數(shù)列的常用性質(zhì)在等比數(shù)列{an}中,若Sn為其前n項(xiàng)和,則Sn,S2n-Sn,S3n-S2n也成等比數(shù)列(n為偶數(shù)且q=-1除外).【方法技巧】???解決數(shù)列的單調(diào)性問(wèn)題的三種方法(1)用作差比較法,根據(jù)an+1-an的符號(hào)判斷數(shù)列{an}是遞增數(shù)列、遞減數(shù)列還是常數(shù)列.(2)用作商比較法,根據(jù)eq\f(an+1,an)(an>0或an<0)與1的大小關(guān)系進(jìn)行判斷.(3)函數(shù)法.???求數(shù)列的最大項(xiàng)與最小項(xiàng)的常用方法(1)函數(shù)法,利用函數(shù)求最值.(2)利用eq\b\lc\{\rc\(\a\vs4\al\co1(an≥an-1,,an≥an+1))(n≥2)確定最大項(xiàng),利用eq\b\lc\{\rc\(\a\vs4\al\co1(an≤an-1,,an≤an+1))(n≥2)確定最小項(xiàng).(3)比較法:若有an+1-an=f(n+1)-f(n)>0eq\b\lc\(\rc\)(\a\vs4\al\co1(或當(dāng)an>0時(shí),\f(an+1,an)>1)),則an+1>an,則數(shù)列{an}是遞增數(shù)列,所以數(shù)列{an}的最小項(xiàng)為a1;若有an+1-an=f(n+1)-f(n)<0eq\b\lc\(\rc\)(\a\vs4\al\co1(或當(dāng)an>0時(shí),\f(an+1,an)<1)),則an+1<an,則數(shù)列{an}是遞減數(shù)列,所以數(shù)列{an}的最大項(xiàng)為a1.【核心題型】題型一:等差數(shù)列的基本計(jì)算1.(2023·四川南充·四川省南充高級(jí)中學(xué)??寄M預(yù)測(cè))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·湖南岳陽(yáng)·統(tǒng)考一模)已知兩個(gè)等差數(shù)列2,6,10,…及2,8,14,…,200,將這兩個(gè)等差數(shù)列的公共項(xiàng)按從小到大的順序組成一個(gè)新數(shù)列SKIPIF1<0,則數(shù)列SKIPIF1<0的各項(xiàng)之和為(

)A.1666 B.1654 C.1472 D.14603.(2023·重慶·統(tǒng)考一模)設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2題型二:等差數(shù)列的基本性質(zhì)4.(2022·浙江·模擬預(yù)測(cè))已知等差數(shù)列SKIPIF1<0中,SKIPIF1<0,公差SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·甘肅張掖·高臺(tái)縣第一中學(xué)校考模擬預(yù)測(cè))已知SKIPIF1<0是各項(xiàng)不全為零的等差數(shù)列,前n項(xiàng)和是SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則正整數(shù)m=(

)A.2020 B.2019 C.2018 D.20176.(2022·全國(guó)·高三專題練習(xí))設(shè)正項(xiàng)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型三:等差數(shù)列的函數(shù)7.(2022·全國(guó)·校聯(lián)考模擬預(yù)測(cè))設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,都有SKIPIF1<0.若SKIPIF1<0,則(

)A.SKIPIF1<0的最小值是SKIPIF1<0 B.SKIPIF1<0的最小值是SKIPIF1<0C.SKIPIF1<0的最大值是SKIPIF1<0 D.SKIPIF1<0的最大值是SKIPIF1<08.(2022·浙江紹興·統(tǒng)考一模)已知數(shù)列SKIPIF1<0為等差數(shù)列,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則“SKIPIF1<0”是“數(shù)列SKIPIF1<0為單增數(shù)列”的(

)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.(2019·福建福州·統(tǒng)考模擬預(yù)測(cè))設(shè)正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0滿足SKIPIF1<0,記SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),SKIPIF1<0.?dāng)?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則使得SKIPIF1<0成立的SKIPIF1<0的最小值為(

)A.1179 B.1178 C.2019 D.2018題型四:含絕對(duì)值的等差數(shù)列前項(xiàng)和10.(2022·寧夏石嘴山·石嘴山市第三中學(xué)??既#┮阎獢?shù)列SKIPIF1<0的前n項(xiàng)之和SKIPIF1<0,則SKIPIF1<0的值為SKIPIF1<0SKIPIF1<0A.61 B.65 C.67 D.6811.(2019秋·福建福州·高三??计谥校┮阎本€SKIPIF1<0與直線SKIPIF1<0互相平行且距離為SKIPIF1<0.等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0的值為A.60. B.52 C.44 D.3612.(2023·高三課時(shí)練習(xí))設(shè)等差數(shù)列SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的公差為SKIPIF1<0,滿足SKIPIF1<0SKIPIF1<0SKIPIF1<0,則下列說(shuō)法正確的是A.SKIPIF1<0 B.SKIPIF1<0的值可能為奇數(shù)C.存在SKIPIF1<0,滿足SKIPIF1<0 D.SKIPIF1<0的可能取值為SKIPIF1<0題型五:等差數(shù)列奇數(shù)或偶數(shù)和問(wèn)題13.(2022·全國(guó)·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0的項(xiàng)數(shù)為奇數(shù),其中所有奇數(shù)項(xiàng)之和為SKIPIF1<0,所有偶數(shù)項(xiàng)之和為SKIPIF1<0,則該數(shù)列的中間項(xiàng)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.(2020春·全國(guó)·高三專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.0 B.1300C.2600 D.260215.(2021·全國(guó)·統(tǒng)考模擬預(yù)測(cè))等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則n=(

)A.13 B.12 C.24 D.25題型六:等差數(shù)列前n項(xiàng)和的性質(zhì)16.(2022·四川·四川師范大學(xué)附屬中學(xué)校考二模)設(shè)等差數(shù)列SKIPIF1<0,SKIPIF1<0的前n項(xiàng)和分別是SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.317.(2022·全國(guó)·高三專題練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.20 B.30 C.40 D.5018.(2020·安徽淮北·統(tǒng)考一模)設(shè)等差數(shù)列SKIPIF1<0的公差不為0,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0A.0 B.-2020 C.2020 D.4040題型七:等比數(shù)列的基本計(jì)算19.(2023·河南鄭州·統(tǒng)考一模)記SKIPIF1<0為等比數(shù)列SKIPIF1<0的前n項(xiàng)和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.32 B.31 C.63 D.6420.(2023·吉林·長(zhǎng)春十一高校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0為等比數(shù)列,SKIPIF1<0是它的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的等差中項(xiàng)為SKIPIF1<0,則SKIPIF1<0等于(

)A.35 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2023·貴州畢節(jié)·統(tǒng)考一模)已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型八:等比數(shù)列的性質(zhì)22.(2022·四川遂寧·射洪中學(xué)??寄M預(yù)測(cè))SKIPIF1<0為公比大于1的正項(xiàng)等比數(shù)列,且SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩根,若正實(shí)數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<023.(2022·山東·統(tǒng)考模擬預(yù)測(cè))已知等比數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(

)A.20 B.10 C.5 D.SKIPIF1<024.(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0為等比數(shù)列,SKIPIF1<0,SKIPIF1<0為函數(shù)SKIPIF1<0的兩個(gè)不同的零點(diǎn),則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.12 D.18題型九:等比數(shù)列前n項(xiàng)和的性質(zhì)25.(2022·湖北襄陽(yáng)·襄陽(yáng)五中??寄M預(yù)測(cè))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.3 B.4 C.5 D.626.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若存在SKIPIF1<0,滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的公比為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.327.(2021·陜西安康·統(tǒng)考二模)已知等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.9 B.10 C.12 D.17題型十:等差等比的實(shí)際應(yīng)用28.(2023·陜西咸陽(yáng)·武功縣普集高級(jí)中學(xué)統(tǒng)考一模)古希臘大哲學(xué)家芝諾提出一個(gè)有名的悖論,其大意是:“阿喀琉斯是古希臘神話中善跑的英雄,在他和烏龜?shù)馁惻苤?,他的速度是烏龜速度?0倍,烏龜在他前面100米爬行,他在后而追,但他不可能追上烏龜,原因是在競(jìng)賽中,追者首先必須到達(dá)被追者的出發(fā)點(diǎn),當(dāng)阿喀琉斯追了100米時(shí),烏龜已在他前面爬行了10米,而當(dāng)他追到烏龜爬行的10米時(shí),烏龜又向前爬行了1米,就這樣,烏龜會(huì)制造出無(wú)窮個(gè)起點(diǎn),它總能在起點(diǎn)與自己之間制造出一個(gè)距離,不管這個(gè)距離有多小,只要烏龜不停地向前爬行,阿喀琉斯就永遠(yuǎn)追不上烏龜.“試問(wèn)在阿喀琉斯與烏龜?shù)母?jìng)賽中,當(dāng)阿喀斯與烏龜相距0.01米時(shí),烏龜共爬行了(

)A.11.1米 B.10.1米 C.11.11米 D.11米29.(2022春·新疆·高三??茧A段練習(xí))北京SKIPIF1<0年冬奧會(huì)開(kāi)幕式用“一朵雪花”的故事連接中國(guó)與世界,傳遞了“人類命運(yùn)共同體”的理念.“雪花曲線”也叫“科赫雪花”,它是由等邊三角形三邊生成的科赫曲線組成的,是一種分形幾何.圖1是長(zhǎng)度為SKIPIF1<0的線段,將圖1中的線段三等分,以中間部分的線段為邊,向外作等邊三角形,再將中間部分的線段去掉得到圖2,這稱為“一次分形”;用同樣的方法把圖2中的每條線段重復(fù)上述操作,得到圖3,這稱為“二次分形”;SKIPIF1<0.依次進(jìn)行“SKIPIF1<0次分形SKIPIF1<0”.規(guī)定:一個(gè)分形圖中所有線段的長(zhǎng)度之和為該分形圖的長(zhǎng)度.若要得到一個(gè)長(zhǎng)度不小于SKIPIF1<0的分形圖,則SKIPIF1<0的最小值是(

)(參考數(shù)據(jù)SKIPIF1<0,SKIPIF1<0)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<030.(2022秋·湖南永州·高三永州市第一中學(xué)??茧A段練習(xí))如圖是標(biāo)準(zhǔn)對(duì)數(shù)遠(yuǎn)視力表的一部分.最左邊一列“五分記錄”為標(biāo)準(zhǔn)對(duì)數(shù)視力記錄,這組數(shù)據(jù)從上至下為等差數(shù)列,公差為SKIPIF1<0;最右邊一列“小數(shù)記錄”為國(guó)際標(biāo)準(zhǔn)視力記錄的近似值,這組數(shù)據(jù)從上至下為等比數(shù)列,公比為SKIPIF1<0.已知標(biāo)準(zhǔn)對(duì)數(shù)視力SKIPIF1<0對(duì)應(yīng)的國(guó)際標(biāo)準(zhǔn)視力準(zhǔn)確值為SKIPIF1<0,則標(biāo)準(zhǔn)對(duì)數(shù)視力SKIPIF1<0對(duì)應(yīng)的國(guó)際標(biāo)準(zhǔn)視力精確到小數(shù)點(diǎn)后兩位約為(

)(參考數(shù)據(jù):SKIPIF1<0)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【高考必刷】一、單選題31.(2023·貴州貴陽(yáng)·統(tǒng)考模擬預(yù)測(cè))等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則數(shù)列SKIPIF1<0的前9項(xiàng)之和為(

)A.24 B.27 C.48 D.5432.(2023·河南·校聯(lián)考模擬預(yù)測(cè))記公差不為0的等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0成等比數(shù)列,SKIPIF1<0,則SKIPIF1<0(

)A.17 B.19 C.21 D.2333.(2023·新疆烏魯木齊·統(tǒng)考一模)中國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有一道題:“今有七人差等均錢(qián),甲乙均七十七文,戊己庚均七十五文,問(wèn)乙丁各若干?”,意思是甲、乙、丙、丁、戊、己、庚這七個(gè)人,所分到的錢(qián)數(shù)成等差數(shù)列,甲、乙兩人共分到77文,戊、己、庚三人共分到75文,問(wèn)乙、丁兩人各分到多少文錢(qián)?則下列說(shuō)法正確的是(

)A.乙分到37文,丁分到31文 B.乙分到40文,丁分到34文C.乙分到31文,丁分到37文 D.乙分到34文,丁分到40文34.(2023·廣東深圳·統(tǒng)考一模)將一個(gè)頂角為120°的等腰三角形(含邊界和內(nèi)部)的底邊三等分,挖去由兩個(gè)等分點(diǎn)和上頂點(diǎn)構(gòu)成的等邊三角形,得到與原三角形相似的兩個(gè)全等三角形,再對(duì)余下的所有三角形重復(fù)這一操作.如果這個(gè)操作過(guò)程無(wú)限繼續(xù)下去…,最后挖剩下的就是一條“雪花”狀的Koch曲線,如圖所示已知最初等腰三角形的面積為1,則經(jīng)過(guò)4次操作之后所得圖形的面積是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<035.(2023·四川綿陽(yáng)·統(tǒng)考二模)已知等比數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則使得SKIPIF1<0成立的最小正整數(shù)SKIPIF1<0的值為(

)A.10 B.11 C.12 D.1336.(2023·上?!そy(tǒng)考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0的各項(xiàng)均為實(shí)數(shù),SKIPIF1<0為其前n項(xiàng)和,若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列B.SKIPIF1<0為等比數(shù)列,SKIPIF1<0為等差數(shù)列C.SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列D.SKIPIF1<0為等比數(shù)列,SKIPIF1<0為等差數(shù)列37.(2023·廣東梅州·統(tǒng)考一模)某軟件研發(fā)公司對(duì)某軟件進(jìn)行升級(jí),主要是軟件程序中的某序列SKIPIF1<0重新編輯,編輯新序列為SKIPIF1<0,它的第SKIPIF1<0項(xiàng)為SKIPIF1<0,若序列SKIPIF1<0的所有項(xiàng)都是2,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C..SKIPIF1<0 D.SKIPIF1<038.(2023·福建漳州·統(tǒng)考二模)大衍數(shù)列來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和,是中華傳統(tǒng)文化中隱藏的世界數(shù)學(xué)史上第一道數(shù)列題.已知該數(shù)列SKIPIF1<0的前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,記SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前20項(xiàng)和是(

)A.110 B.100 C.90 D.80二、多選題39.(2023·廣東梅州·統(tǒng)考一模)設(shè)SKIPIF1<0是公差為SKIPIF1<0(SKIPIF1<0)的無(wú)窮等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,則下列命題正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0是數(shù)列SKIPIF1<0的最大項(xiàng)B.若數(shù)列SKIPIF1<0有最小項(xiàng),則SKIPIF1<0C.若

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論