長沙學(xué)院《色彩構(gòu)成》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁
長沙學(xué)院《色彩構(gòu)成》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁
長沙學(xué)院《色彩構(gòu)成》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁
長沙學(xué)院《色彩構(gòu)成》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁長沙學(xué)院

《色彩構(gòu)成》2021-2022學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、視頻分析是計(jì)算機(jī)視覺的一個重要領(lǐng)域。假設(shè)要對一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡單的動作識別,對于復(fù)雜的多人物交互行為無法處理D.視頻的分辨率和幀率對視頻分析的結(jié)果沒有影響2、在計(jì)算機(jī)視覺的目標(biāo)計(jì)數(shù)任務(wù)中,統(tǒng)計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計(jì)一個果園中蘋果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進(jìn)行計(jì)數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測蘋果的數(shù)量C.目標(biāo)計(jì)數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計(jì)數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計(jì)數(shù)的準(zhǔn)確性3、在計(jì)算機(jī)視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學(xué)習(xí)方法可以學(xué)習(xí)到更具語義的圖像表示,提高圖像檢索的準(zhǔn)確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)4、計(jì)算機(jī)視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達(dá)到100%的準(zhǔn)確率5、假設(shè)要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計(jì)算機(jī)視覺系統(tǒng),以下哪種圖像增強(qiáng)方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗(yàn)去霧D.以上都是6、計(jì)算機(jī)視覺中的圖像語義分割需要為圖像中的每個像素分配類別標(biāo)簽。假設(shè)要對一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時(shí)能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab7、計(jì)算機(jī)視覺中的工業(yè)檢測任務(wù)需要檢測產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對一批電子產(chǎn)品的外觀進(jìn)行檢測,要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測方法在處理這種高精度要求的任務(wù)時(shí)最為適用?()A.機(jī)器視覺檢測B.人工目檢C.抽樣檢測D.基于統(tǒng)計(jì)的檢測8、計(jì)算機(jī)視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設(shè)要在一個大型商場的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識別,以下關(guān)于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態(tài)和光照變化不敏感,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法能夠?qū)W習(xí)到行人的判別性特征,但容易受到背景干擾C.行人重識別系統(tǒng)只需要關(guān)注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響9、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對腫瘤的檢測和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)10、在計(jì)算機(jī)視覺的目標(biāo)識別任務(wù)中,除了識別目標(biāo)的類別,還需要確定目標(biāo)的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識別多個不同大小的物體,以下哪種目標(biāo)識別算法能夠適應(yīng)不同尺度的目標(biāo)?()A.基于滑動窗口的目標(biāo)識別算法B.基于特征金字塔的目標(biāo)識別算法C.基于注意力機(jī)制的目標(biāo)識別算法D.基于模板匹配的目標(biāo)識別算法11、在一個基于計(jì)算機(jī)視覺的工業(yè)質(zhì)量檢測系統(tǒng)中,需要檢測產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學(xué)操作C.閾值分割算法D.霍夫變換12、在計(jì)算機(jī)視覺的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測和病蟲害檢測,需要對大量的田間圖像進(jìn)行分析。假設(shè)我們要檢測農(nóng)作物葉片上的病蟲害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準(zhǔn)確的檢測,并且適應(yīng)不同的生長階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測和分類算法,針對病蟲害特征訓(xùn)練C.基于光譜分析和顏色特征的方法D.基于機(jī)器視覺和模式識別的方法13、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來。假設(shè)要對一張包含多個水果的圖像進(jìn)行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時(shí)表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測的分割D.基于深度學(xué)習(xí)的語義分割14、在計(jì)算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項(xiàng)是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計(jì)算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學(xué)習(xí)中的自動特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征,比手工設(shè)計(jì)的特征更具有代表性和判別力D.特征提取的結(jié)果對后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果15、在計(jì)算機(jī)視覺中,目標(biāo)檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含多種物體的圖像中準(zhǔn)確檢測出汽車的位置和類別。以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復(fù)雜場景下檢測效果優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠?qū)崿F(xiàn)高精度的目標(biāo)檢測C.目標(biāo)檢測算法只關(guān)注物體的外觀特征,不考慮物體之間的空間關(guān)系D.所有的目標(biāo)檢測算法對于小目標(biāo)的檢測都具有同樣出色的性能16、計(jì)算機(jī)視覺中的視頻分析需要對連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時(shí)最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識別模型17、計(jì)算機(jī)視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時(shí)空動態(tài)信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動軌跡的方法D.基于音頻和視頻融合的方法18、假設(shè)要開發(fā)一個能夠?qū)ξ奈镞M(jìn)行數(shù)字化保護(hù)和修復(fù)的計(jì)算機(jī)視覺系統(tǒng),需要對文物的破損部分進(jìn)行準(zhǔn)確識別和重建。以下哪種技術(shù)在文物修復(fù)方面可能具有應(yīng)用潛力?()A.圖像修復(fù)算法B.三維重建技術(shù)C.虛擬增強(qiáng)現(xiàn)實(shí)技術(shù)D.以上都是19、計(jì)算機(jī)視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個擁擠的公共場所中準(zhǔn)確檢測出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復(fù)雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學(xué)習(xí)的行人檢測C.基于運(yùn)動信息的行人檢測D.基于形狀模板的行人檢測20、在計(jì)算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項(xiàng)是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會影響三維重建的結(jié)果21、在計(jì)算機(jī)視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實(shí)用價(jià)值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失22、在計(jì)算機(jī)視覺的應(yīng)用于自動駕駛領(lǐng)域,需要實(shí)時(shí)檢測道路上的交通標(biāo)志和標(biāo)線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準(zhǔn)確地檢測到各種交通標(biāo)志,并且對光照變化和遮擋具有較強(qiáng)的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學(xué)習(xí)的檢測方法,結(jié)合多尺度特征C.基于邊緣檢測和形態(tài)學(xué)操作的方法D.基于模板匹配和特征點(diǎn)匹配的方法23、在計(jì)算機(jī)視覺的動作識別任務(wù)中,識別視頻中的人物動作。假設(shè)要識別一段舞蹈視頻中的動作,以下關(guān)于動作識別方法的描述,哪一項(xiàng)是不正確的?()A.可以提取視頻中的時(shí)空特征,如光流和運(yùn)動軌跡,來描述動作B.基于深度學(xué)習(xí)的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進(jìn)行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復(fù)雜的、個性化的動作無法準(zhǔn)確識別24、計(jì)算機(jī)視覺在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項(xiàng)是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識不足,導(dǎo)致標(biāo)注錯誤D.數(shù)據(jù)量過大,標(biāo)注工作耗時(shí)費(fèi)力25、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關(guān)于圖像特征表示的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機(jī)選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述圖像的顯著性檢測的目的。2、(本題5分)說明計(jì)算機(jī)視覺在火山活動監(jiān)測中的應(yīng)用。3、(本題5分)簡述圖像的均值漂移算法的用途。4、(本題5分)解釋計(jì)算機(jī)視覺中特征提取的概念,并列舉至少兩種常用的特征提取方法。三、分析題(本大題共5個小題,共25分)1、(本題5分)解析某汽車品牌的售后服務(wù)廣告設(shè)計(jì),探討其如何運(yùn)用視覺語言傳達(dá)品牌的售后服務(wù)優(yōu)勢和承諾,提高客戶滿意度和忠誠度。2、(本題5分)分析某電子產(chǎn)品的包裝設(shè)計(jì),探討其如何在保護(hù)產(chǎn)品的同時(shí),通過造型、色彩和材質(zhì)傳達(dá)產(chǎn)品的品質(zhì)和科技感,提升消費(fèi)者的購買欲望。3、(本題5分)一家書店的店面招牌設(shè)計(jì)醒目,字體和圖案富有藝術(shù)感。請?zhí)接懺撜信圃O(shè)計(jì)如何在眾多店鋪中脫穎而出,如何傳遞書店的品牌理念,以及對吸引顧客進(jìn)店的作用。4、(本題5分)以一個時(shí)尚品牌的時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論