浙江傳媒學(xué)院《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
浙江傳媒學(xué)院《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
浙江傳媒學(xué)院《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
浙江傳媒學(xué)院《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
浙江傳媒學(xué)院《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁浙江傳媒學(xué)院

《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析的倫理和法律方面,需要遵循一定的原則和規(guī)范。假設(shè)你處理的是包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)處理的做法,哪一項(xiàng)是最符合倫理和法律要求的?()A.在未獲得授權(quán)的情況下,將數(shù)據(jù)用于其他商業(yè)目的B.對數(shù)據(jù)進(jìn)行匿名化處理,確保無法追溯到個(gè)人身份C.忽視數(shù)據(jù)的隱私保護(hù),認(rèn)為分析結(jié)果更重要D.隨意分享數(shù)據(jù)給第三方機(jī)構(gòu)2、假設(shè)要分析一個(gè)電商平臺的用戶評論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識別D.以上都是3、在數(shù)據(jù)分析中,模型的過擬合和欠擬合是常見的問題。假設(shè)要訓(xùn)練一個(gè)預(yù)測房價(jià)的模型,以下關(guān)于防止過擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化4、在數(shù)據(jù)分析中,需要對缺失值進(jìn)行處理,例如在一個(gè)包含客戶信息的數(shù)據(jù)集里,部分客戶的年齡數(shù)據(jù)缺失。以下哪種處理缺失值的方法可能是合適的?()A.直接刪除包含缺失值的記錄B.用平均值或中位數(shù)填充C.根據(jù)其他相關(guān)變量進(jìn)行推測填充D.以上都是5、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的性能優(yōu)化是一個(gè)重要的問題。以下關(guān)于數(shù)據(jù)倉庫性能優(yōu)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫性能優(yōu)化可以提高數(shù)據(jù)查詢和分析的效率B.數(shù)據(jù)倉庫性能優(yōu)化可以通過優(yōu)化數(shù)據(jù)存儲結(jié)構(gòu)、索引設(shè)計(jì)和查詢語句等方法來實(shí)現(xiàn)C.數(shù)據(jù)倉庫性能優(yōu)化需要考慮數(shù)據(jù)的規(guī)模、復(fù)雜度和使用頻率等因素D.數(shù)據(jù)倉庫性能優(yōu)化只需要關(guān)注硬件設(shè)備的升級和擴(kuò)展,無需考慮軟件方面的優(yōu)化6、假設(shè)要分析電商平臺上的用戶購買行為隨時(shí)間的變化,以下關(guān)于時(shí)間序列分析的描述,正確的是:()A.不考慮季節(jié)性因素,直接進(jìn)行時(shí)間序列建模B.時(shí)間序列分解可以將數(shù)據(jù)分解為趨勢、季節(jié)性和隨機(jī)成分,有助于深入分析C.短期的時(shí)間序列數(shù)據(jù)比長期的數(shù)據(jù)更有分析價(jià)值D.時(shí)間序列分析只能用于預(yù)測未來,不能用于解釋過去的行為模式7、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要?jiǎng)?chuàng)建一個(gè)展示銷售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對比度和可讀性B.使用過于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計(jì)原則,選擇對比度高、易于區(qū)分和視覺舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗(yàn),只追求美觀8、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類別占比極少,以下哪種方法可以處理這種不平衡問題?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是9、在進(jìn)行數(shù)據(jù)分析時(shí),發(fā)現(xiàn)數(shù)據(jù)集中存在一些離群點(diǎn)。對于離群點(diǎn)的處理,以下哪種方法較為恰當(dāng)?()A.直接刪除B.視為異常值,進(jìn)行特殊分析C.用平均值替代D.忽略不管10、在對一個(gè)社交媒體平臺的用戶興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶畫像和廣告定向中發(fā)揮重要作用?()A.分類算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是11、在數(shù)據(jù)分析中,若要對數(shù)據(jù)進(jìn)行預(yù)處理以去除噪聲,以下哪種方法可能會被使用?()A.中值濾波B.均值濾波C.高斯濾波D.以上都是12、在處理時(shí)間序列數(shù)據(jù)時(shí),如果需要對數(shù)據(jù)進(jìn)行季節(jié)性分解,以下哪種方法在Python中常用?()A.statsmodels庫中的seasonal_decompose函數(shù)B.scikit-learn庫中的decomposition模塊C.pandas庫中的resample函數(shù)D.matplotlib庫中的plot函數(shù)13、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問題來確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說法中,錯(cuò)誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類型的問題和數(shù)據(jù),需要根據(jù)實(shí)際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗(yàn)和案例,但不能完全依賴C.選擇數(shù)據(jù)分析方法時(shí),應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會影響分析結(jié)果的可靠性14、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹狀圖15、在進(jìn)行時(shí)間序列預(yù)測時(shí),如果數(shù)據(jù)存在明顯的周期性,但周期長度不固定,以下哪種方法可能適用?()A.Prophet模型B.LSTM神經(jīng)網(wǎng)絡(luò)C.動(dòng)態(tài)時(shí)間規(guī)整D.以上都不是二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)闡述數(shù)據(jù)分析中的特征工程的主要任務(wù)和方法,包括特征提取、選擇和構(gòu)建,并說明特征工程對模型性能的影響。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何處理數(shù)據(jù)中的長尾分布?闡述應(yīng)對長尾分布的方法和策略,并舉例說明。3、(本題5分)解釋什么是圖數(shù)據(jù)分析,說明其在交通網(wǎng)絡(luò)、社交關(guān)系等領(lǐng)域的應(yīng)用場景和常用算法,并舉例分析。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)醫(yī)療健康領(lǐng)域的可穿戴設(shè)備產(chǎn)生了個(gè)人健康數(shù)據(jù),如何對這些數(shù)據(jù)進(jìn)行分析以提供個(gè)性化的健康建議和疾病預(yù)防?請論述數(shù)據(jù)分析在健康管理中的應(yīng)用、數(shù)據(jù)的可靠性驗(yàn)證以及與醫(yī)療機(jī)構(gòu)的整合問題。2、(本題5分)隨著電子商務(wù)的迅猛發(fā)展,大量的交易數(shù)據(jù)被生成。論述如何運(yùn)用數(shù)據(jù)分析技術(shù),如關(guān)聯(lián)規(guī)則挖掘、聚類分析等,深入挖掘消費(fèi)者的購買行為模式,從而為電商企業(yè)制定精準(zhǔn)營銷策略,包括個(gè)性化推薦、交叉銷售和客戶細(xì)分等,同時(shí)分析可能面臨的挑戰(zhàn)及解決方法。3、(本題5分)社交媒體廣告投放需要精準(zhǔn)的數(shù)據(jù)分析。以某社交媒體平臺為例,分析如何利用數(shù)據(jù)分析來確定目標(biāo)受眾、優(yōu)化廣告投放策略、評估廣告效果,以及如何應(yīng)對廣告欺詐和虛假流量的問題。4、(本題5分)對于企業(yè)的銷售數(shù)據(jù),論述如何運(yùn)用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)潛在的客戶群體和市場細(xì)分,制定針對性的市場營銷策略。5、(本題5分)探討在社交媒體用戶畫像構(gòu)建中,如何整合多源數(shù)據(jù),包括用戶基本信息、社交行為和興趣愛好等,實(shí)現(xiàn)精準(zhǔn)的用戶分類和營銷。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某在線購物平臺保存了用戶的購物車放棄數(shù)據(jù)、支付失敗記錄、售后反饋等。思考如何通過這些數(shù)據(jù)改善用戶購物體驗(yàn)和解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論