山東省鄄城一中2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁
山東省鄄城一中2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁
山東省鄄城一中2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁
山東省鄄城一中2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁
山東省鄄城一中2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省鄄城一中2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實數(shù),則()A. B. C. D.2.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或3.設(shè)是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.設(shè),,是非零向量.若,則()A. B. C. D.5.已知角的終邊經(jīng)過點,則A. B.C. D.6.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.27.設(shè)為非零實數(shù),且,則()A. B. C. D.8.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.9.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.3210.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.11.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.12.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,滿足,,,則的取值范圍為_________.14.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.15.已知一個圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為________16.若在上單調(diào)遞減,則的取值范圍是_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。18.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.19.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.20.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.21.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.22.(10分)已知函數(shù),.(Ⅰ)當(dāng)時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時,的最大值為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

可設(shè),將化簡,得到,由復(fù)數(shù)為實數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點睛】本題考查復(fù)數(shù)的模長、除法運算,由復(fù)數(shù)的類型求解對應(yīng)參數(shù),屬于基礎(chǔ)題2、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.3、A【解析】

根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時,,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關(guān)鍵,屬于中等題.4、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標(biāo)運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運算,此法對解含垂直關(guān)系的問題往往有很好效果.5、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.6、D【解析】

分析可得,再去絕對值化簡成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時,等式不是雙曲線的方程;當(dāng)時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎(chǔ)題.7、C【解析】

取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運用.8、B【解析】

依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過,再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點,當(dāng)時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題9、B【解析】

根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.10、B【解析】

建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結(jié)果求參數(shù),屬于中檔題.11、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.12、A【解析】

對函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【詳解】設(shè),,,,如圖所示:因為,,,所以A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【點睛】本題主要考查平面向量的模及運算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.14、【解析】

設(shè),則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.15、【解析】

依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為?!军c睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。16、【解析】

由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時,顯然,符合題意;當(dāng)時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在定點,見解析【解析】

(1)設(shè)動點,則,利用,求出曲線的方程.(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時,,;當(dāng)時,,。所以存在定點,使得直線與斜率之積為定值?!军c睛】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計算能力,屬于中檔題.18、(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標(biāo)為【解析】

(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關(guān)系并建立空間直角坐標(biāo)系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關(guān)系,即可計算出的坐標(biāo)從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標(biāo)系,則平面的一個法向量是,,,.設(shè),,,,代入上式得,,,所以.設(shè)平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標(biāo)為.【點睛】本題考查面面垂直的證明以及利用向量法求解二面角有關(guān)的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結(jié)合圖形分析.19、(1).(2)1【解析】

(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因為PA⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因為∠BAD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因為M為PC的中點,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因為AN=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個法向量.因為直線MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【點睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.20、(1);(2)【解析】

(1)由,可求出的值,進(jìn)而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個函數(shù)的值域間的關(guān)系可求出的取值范圍.【詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍是.【點睛】本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的求法,考查了學(xué)生的計算求解能力,屬于中檔題.21、(1)(2)證明見解析【解析】

(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時,;當(dāng)時,;當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論