版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市番禺區(qū)實驗中學2025屆高三下學期第五次調研考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知菱形的邊長為2,,則()A.4 B.6 C. D.2.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.634.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.35.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.106.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立7.已知函數(shù),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.8.已知整數(shù)滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.9.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.10.已知實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.11.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.12.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.已知函數(shù),若,則實數(shù)的取值范圍為__________.16.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.18.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.19.(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右頂點到右焦點的距離與它到右準線的距離之比為.(1)求橢圓的標準方程;(2)若是橢圓上關于軸對稱的任意兩點,設,連接交橢圓于另一點.求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.22.(10分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點在線段上移動(不與重合),是的中點.(1)當四面體的外接球的表面積為時,證明:.平面(2)當四面體的體積最大時,求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)菱形中的邊角關系,利用余弦定理和數(shù)量積公式,即可求出結果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應用問題,屬于基礎題..2、B【解析】
根據(jù)程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.3、B【解析】
根據(jù)程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.4、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.5、C【解析】
根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質,屬難題.6、A【解析】
作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.7、C【解析】
將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,因為函數(shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.8、D【解析】
列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.9、C【解析】
畫出圖形,以為基底將向量進行分解后可得結果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.10、B【解析】
畫出可行域,根據(jù)可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內(nèi)的點到原點距離的最小值,此時,點到原點的距離是可行域內(nèi)的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規(guī)劃,兩點間距離公式等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識.11、A【解析】
根據(jù)實數(shù)滿足的等量關系,代入后將方程變形,構造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.12、A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關鍵的是找到的方程或不等式,本題屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【詳解】原問題等價于,當時,函數(shù)圖象如圖此時,則,解得:;當時,函數(shù)圖象如圖此時,則,解得:;當時,函數(shù)圖象如圖此時,則,解得:;當時,函數(shù)圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【點睛】本題主要考查了對勾函數(shù)的圖象與性質,函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉化與化歸的思想.14、1【解析】
按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.15、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調遞減,利用偶函數(shù)性質和單調性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調遞增,在上單調遞減,故,故實數(shù)的取值范圍為.故答案為:【點睛】本題考查利用函數(shù)奇偶性及單調性解不等式.函數(shù)奇偶性的常用結論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調性.16、【解析】
利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
根據(jù),可解得,設為曲線任一點,在矩陣對應的變換作用下得到點,則點在曲線上,根據(jù)變換的定義寫出相應的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設為曲線任一點,則,又設在矩陣A變換作用得到點,則,即,所以即代入,得,所以曲線的方程為.【點睛】本題考查逆矩陣,矩陣與變換等,是基礎題.18、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.19、(1);(2)證明詳見解析,;(3).【解析】
(1)根據(jù)題意列出關于的等式求解即可.(2)先根據(jù)對稱性,直線過的定點一定在軸上,再設直線的方程為,聯(lián)立直線與橢圓的方程,進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達定理再代入求解出關于的解析式,再求解范圍即可.【詳解】解:設橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據(jù)對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設直線的方程為,聯(lián)立,消去得到,設點,則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點.當過點的直線的斜率不存在時,直線的方程為,此時,當過點的直線斜率存在時,設直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.【點睛】本題主要考查了橢圓的基本量求解以及定值和范圍的問題,需要分析直線的斜率是否存在的情況,再聯(lián)立直線與橢圓的方程,根據(jù)韋達定理以及所求的解析式,結合參數(shù)的范圍進行求解.屬于難題.20、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設,根據(jù)向量垂直關系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設,則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象能力.21、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利水電工程施工承包合同
- 房地產(chǎn)行業(yè)預售合同權益保障協(xié)議
- 獨立珠寶設計師作品版權協(xié)議
- 家具設計生產(chǎn)銷售合作協(xié)議
- 二零二四年會議服務支持合作框架協(xié)議書
- 新一代信息通信網(wǎng)絡建設合作協(xié)議
- 職業(yè)電競選手比賽合同
- 新能源汽車電池生產(chǎn)合同
- 環(huán)保產(chǎn)業(yè)技術創(chuàng)新合作協(xié)議
- 2025新生入學法律協(xié)議書(教育權益保護)2篇
- 血透室護士長述職
- 2024年漢中市行政事業(yè)單位國有資產(chǎn)管理委員會辦公室四級主任科員公務員招錄1人《行政職業(yè)能力測驗》模擬試卷(答案詳解版)
- 藝術培訓校長述職報告
- 選擇性必修一 期末綜合測試(二)(解析版)2021-2022學年人教版(2019)高二數(shù)學選修一
- 《論語》學而篇-第一課件
- 《寫美食有方法》課件
- 學校制度改進
- 各行業(yè)智能客服占比分析報告
- 年產(chǎn)30萬噸高鈦渣生產(chǎn)線技改擴建項目環(huán)評報告公示
- 心電監(jiān)護考核標準
- (完整word版)申論寫作格子紙模板
評論
0/150
提交評論