新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題19 直線和圓(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題19 直線和圓(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題19 直線和圓(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題19 直線和圓(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題19 直線和圓(解析版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

答案第=page11頁,共=sectionpages22頁專題19直線和圓【練基礎(chǔ)】單選題1.(2023·浙江嘉興·統(tǒng)考模擬預(yù)測(cè))已知點(diǎn)SKIPIF1<0,SKIPIF1<0與直線SKIPIF1<0,若在直線SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)出SKIPIF1<0點(diǎn)坐標(biāo),由SKIPIF1<0進(jìn)行化簡(jiǎn),結(jié)合二次函數(shù)的性質(zhì)求得SKIPIF1<0的取值范圍.【詳解】對(duì)于直線SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在直線SKIPIF1<0上,設(shè)SKIPIF1<0,其中SKIPIF1<0,由SKIPIF1<0兩邊平方得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,且最大值為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:A2.(2023·山西·校聯(lián)考模擬預(yù)測(cè))已知圓SKIPIF1<0:SKIPIF1<0的圓心到直線SKIPIF1<0的距離為SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0的公切線共有(

)A.0條 B.1條 C.2條 D.3條【答案】B【分析】先根據(jù)題意求得SKIPIF1<0,從而得到兩圓的圓心和半徑,進(jìn)而求得圓心距等于兩半徑的差,得知兩圓內(nèi)切,即可知道公切線只有1條.【詳解】圓SKIPIF1<0:SKIPIF1<0的圓心為SKIPIF1<0,半徑為a,所以圓心到直線SKIPIF1<0的距離為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以圓SKIPIF1<0:SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0.圓SKIPIF1<0:SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0,圓心距SKIPIF1<0,所以兩圓相內(nèi)切.所以兩圓的公切線只有1條.故選:B.3.(2023·黑龍江哈爾濱·哈爾濱三中??家荒#┮阎猄KIPIF1<0,SKIPIF1<0,若直線SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意分析可得直線SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0有公共點(diǎn)(公共點(diǎn)不能是SKIPIF1<0、SKIPIF1<0),結(jié)合直線與圓的位置關(guān)系分析運(yùn)算.【詳解】若SKIPIF1<0,則點(diǎn)SKIPIF1<0在以SKIPIF1<0,SKIPIF1<0為直徑的圓上(點(diǎn)SKIPIF1<0不能是SKIPIF1<0、SKIPIF1<0),∵以SKIPIF1<0,SKIPIF1<0為直徑的圓的圓心為SKIPIF1<0,半徑SKIPIF1<0,則圓SKIPIF1<0的方程為SKIPIF1<0,即直線SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0有公共點(diǎn)(公共點(diǎn)不能是SKIPIF1<0、SKIPIF1<0),當(dāng)直線SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0有公共點(diǎn)時(shí),則SKIPIF1<0,解得SKIPIF1<0;當(dāng)直線SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0的公共點(diǎn)為A或B時(shí),則直線SKIPIF1<0即為x軸,即SKIPIF1<0;綜上所述:實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.4.(2023·河南·長葛市第一高級(jí)中學(xué)統(tǒng)考模擬預(yù)測(cè))已知點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的右焦點(diǎn),點(diǎn)SKIPIF1<0是雙曲線上位于第一象限內(nèi)的一點(diǎn),且SKIPIF1<0與SKIPIF1<0軸垂直,點(diǎn)SKIPIF1<0是雙曲線漸近線上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由雙曲線的方程可得點(diǎn)SKIPIF1<0坐標(biāo)及漸近線方程,進(jìn)而求得點(diǎn)SKIPIF1<0坐標(biāo),利用點(diǎn)到直線的距離公式即可求解.【詳解】解:由雙曲線方程可得,點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,將SKIPIF1<0代入雙曲線方程,得SKIPIF1<0,由于點(diǎn)SKIPIF1<0在第一象限,所以點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,因?yàn)殡p曲線的漸近線方程為SKIPIF1<0,所以,點(diǎn)SKIPIF1<0到雙曲線的漸近線的距離為SKIPIF1<0.因?yàn)镾KIPIF1<0是雙曲線漸近線上的動(dòng)點(diǎn),所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.5.(2023·內(nèi)蒙古·校聯(lián)考模擬預(yù)測(cè))已知直線SKIPIF1<0被圓SKIPIF1<0截得的線段長為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由圓的一般方程可確定圓心和半徑,根據(jù)直線被圓截得的弦長為SKIPIF1<0可構(gòu)造方程求得結(jié)果.【詳解】由圓SKIPIF1<0方程得:圓心SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0.故選:B.6.(2023·山東泰安·統(tǒng)考一模)已知直線SKIPIF1<0與圓SKIPIF1<0相切,與拋物線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),以SKIPIF1<0為直徑的圓過坐標(biāo)原點(diǎn),則直線SKIPIF1<0的方程為(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【分析】設(shè)直線SKIPIF1<0方程,利用直線與圓相切,與拋物線相交,且驗(yàn)證以SKIPIF1<0為直徑的圓過坐標(biāo)原點(diǎn),即可求得直線方程.【詳解】若直線SKIPIF1<0的斜率不存在,又直線SKIPIF1<0與圓SKIPIF1<0相切,則直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0,又直線與拋物線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),則直線SKIPIF1<0的方程為SKIPIF1<0,此時(shí)可設(shè)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,不符合題題意;若直線SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0得方程為SKIPIF1<0,由直線SKIPIF1<0與圓SKIPIF1<0相切,則圓心SKIPIF1<0到直線的距離為SKIPIF1<0,所以SKIPIF1<0①,設(shè)SKIPIF1<0,則聯(lián)立拋物線與直線方程SKIPIF1<0得SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,整理得:SKIPIF1<0②,聯(lián)立①②解得SKIPIF1<0或SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0.故選:B.7.(2023·河南開封·開封高中??寄M預(yù)測(cè))已知曲線SKIPIF1<0的方程為SKIPIF1<0,曲線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對(duì)稱曲線為SKIPIF1<0,若以曲線SKIPIF1<0與兩坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的四邊形面積為SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.1 C.0或SKIPIF1<0 D.0【答案】C【分析】根據(jù)給定條件,求出曲線SKIPIF1<0的方程,再判斷原點(diǎn)與曲線SKIPIF1<0的位置關(guān)系,結(jié)合四邊形面積求出弦長作答.【詳解】曲線SKIPIF1<0:SKIPIF1<0是以點(diǎn)SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,則曲線SKIPIF1<0是以點(diǎn)SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,圓SKIPIF1<0的方程為SKIPIF1<0,圓SKIPIF1<0與兩坐標(biāo)軸各有兩個(gè)交點(diǎn),又圓SKIPIF1<0的圓心在y軸上,則原點(diǎn)必在圓SKIPIF1<0內(nèi),因此圓SKIPIF1<0的內(nèi)接四邊形兩條對(duì)角線互相垂直,其中一條對(duì)角線長為SKIPIF1<0,設(shè)另一條對(duì)角線長為SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0,因此圓SKIPIF1<0截x軸所得弦長為SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0,從而SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的值為0或SKIPIF1<0.故選:C8.(2023·陜西西安·統(tǒng)考一模)已知雙曲線C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線與圓SKIPIF1<0相切于點(diǎn)Q,與雙曲線的右支交于點(diǎn)P,若線段SKIPIF1<0的垂直平分線恰好過右焦點(diǎn)SKIPIF1<0,則雙曲線C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】A【分析】根據(jù)題意畫出草圖,由題意O為SKIPIF1<0的中點(diǎn)可得SKIPIF1<0,求出SKIPIF1<0,即可得到SKIPIF1<0,SKIPIF1<0,根據(jù)雙曲線定義推得SKIPIF1<0長度,在直角三角形SKIPIF1<0中用勾股定理即可找到SKIPIF1<0之間的關(guān)系,即可求得離心率.【詳解】設(shè)SKIPIF1<0的焦距為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0由題意過SKIPIF1<0的直線與圓SKIPIF1<0相切于點(diǎn)Q,連接SKIPIF1<0,則SKIPIF1<0,連接SKIPIF1<0,設(shè)M為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,則SKIPIF1<0,因?yàn)镺為SKIPIF1<0的中點(diǎn),故Q為SKIPIF1<0的中點(diǎn),即SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,由于M為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,在雙曲線SKIPIF1<0中,P在右支上,有SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,故雙曲線的離心率為SKIPIF1<0,故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:要求雙曲線的離心率,即要求出SKIPIF1<0之間的關(guān)系,因而解答本題時(shí),根據(jù)題意推出相關(guān)線段的長,特別是SKIPIF1<0,繼而在SKIPIF1<0中應(yīng)用勾股定理即是關(guān)鍵所在.二、多選題9.(2023·山東菏澤·統(tǒng)考一模)已知圓SKIPIF1<0,下列說法正確有(

)A.對(duì)于SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0都有兩個(gè)公共點(diǎn)B.圓SKIPIF1<0與動(dòng)圓SKIPIF1<0有四條公切線的充要條件是SKIPIF1<0C.過直線SKIPIF1<0上任意一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線SKIPIF1<0(SKIPIF1<0為切點(diǎn)),則四邊形SKIPIF1<0的面積的最小值為4D.圓SKIPIF1<0上存在三點(diǎn)到直線SKIPIF1<0距離均為1【答案】BC【分析】對(duì)于選項(xiàng)A,轉(zhuǎn)化為判斷直線恒過的定點(diǎn)與圓的位置關(guān)系即可;對(duì)于選項(xiàng)B,轉(zhuǎn)化為兩圓外離,運(yùn)用幾何法求解即可;對(duì)于選項(xiàng)C,由SKIPIF1<0,轉(zhuǎn)化為求SKIPIF1<0最小值即可;對(duì)于選項(xiàng)D,設(shè)圓心到直線的距離為d,比較SKIPIF1<0與1的關(guān)系即可.【詳解】對(duì)于選項(xiàng)A,因?yàn)镾KIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0,所以直線恒過定點(diǎn)SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以定點(diǎn)SKIPIF1<0在圓O外,所以直線SKIPIF1<0與圓O可能相交、相切、相離,即交點(diǎn)個(gè)數(shù)可能為0個(gè)、1個(gè)、2個(gè).故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B,因?yàn)閳AO與動(dòng)圓C有4條公切線,所以圓O與圓C相離,又因?yàn)閳AO的圓心SKIPIF1<0,半徑SKIPIF1<0,圓C的圓心SKIPIF1<0,半徑SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0.故選項(xiàng)B正確;對(duì)于選項(xiàng)C,SKIPIF1<0,又因?yàn)镺到P的距離的最小值為O到直線SKIPIF1<0的距離,即:SKIPIF1<0,所以四邊形PAOB的面積的最小值為SKIPIF1<0.故選項(xiàng)C正確;對(duì)于選項(xiàng)D,因?yàn)閳AO的圓心SKIPIF1<0,半徑SKIPIF1<0,則圓心O到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,所以圓O上存在兩點(diǎn)到直線SKIPIF1<0的距離為1.故選項(xiàng)D錯(cuò)誤.故選:BC.10.(2023·廣東佛山·統(tǒng)考一模)設(shè)單位圓O與x軸的左、右交點(diǎn)分別為A、B,直線l:SKIPIF1<0(其中SKIPIF1<0)分別與直線SKIPIF1<0、SKIPIF1<0交于C、D兩點(diǎn),則(

)A.SKIPIF1<0時(shí),l的傾斜角為SKIPIF1<0B.SKIPIF1<0,點(diǎn)A、B到l的距離之和為定值C.SKIPIF1<0,使l與圓O無公共點(diǎn)D.SKIPIF1<0,恒有SKIPIF1<0【答案】BD【分析】對(duì)于A:首先得到直線的斜率,即可求出直線的傾斜角,從而判斷A,對(duì)于B,分別求出點(diǎn)SKIPIF1<0、SKIPIF1<0到直線SKIPIF1<0的距離,再求和即可,求出坐標(biāo)原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,即可判斷C,求出SKIPIF1<0,SKIPIF1<0點(diǎn)坐標(biāo),再求出SKIPIF1<0,即可判斷D.【詳解】解:依題意SKIPIF1<0,SKIPIF1<0,對(duì)于A:當(dāng)SKIPIF1<0時(shí)直線SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0的斜率SKIPIF1<0,所以直線SKIPIF1<0的傾斜角為SKIPIF1<0,故A錯(cuò)誤;對(duì)于B:點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以點(diǎn)SKIPIF1<0、SKIPIF1<0到直線SKIPIF1<0的距離之和為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即對(duì)SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0到直線SKIPIF1<0的距離之和為定值SKIPIF1<0,故B正確;對(duì)于C:坐標(biāo)原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以直線SKIPIF1<0與單位圓相切,即直線SKIPIF1<0與單位圓必有一個(gè)交點(diǎn),故C錯(cuò)誤;對(duì)于D:對(duì)于直線SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,恒有SKIPIF1<0,故D正確;故選:BD11.(2023·全國·模擬預(yù)測(cè))設(shè)直線l:SKIPIF1<0,圓C:SKIPIF1<0,若直線l與圓C恒有兩個(gè)公共點(diǎn)A,B,則下列說法正確的是(

)A.r的取值范圍是SKIPIF1<0B.若r的值固定不變,則當(dāng)SKIPIF1<0時(shí)∠ACB最小C.若r的值固定不變,則SKIPIF1<0的面積的最大值為SKIPIF1<0D.若SKIPIF1<0,則當(dāng)SKIPIF1<0的面積最大時(shí)直線l的斜率為1或SKIPIF1<0【答案】BD【分析】A選項(xiàng),先整理直線方程,得到直線過的定點(diǎn),再根據(jù)直線與圓的位置關(guān)系得到半徑r的范圍;B選項(xiàng),利用平面幾何知識(shí)分析出當(dāng)SKIPIF1<0時(shí),∠ACB最小,再利用斜率之間的關(guān)系即可判斷;C選項(xiàng),先將SKIPIF1<0的面積用半徑r和圓心C到直線l的距離d表示,再利用二次函數(shù)的知識(shí)求最值即可;D選項(xiàng),利用C選項(xiàng)得到半徑r和圓心C到直線l的距離d之間的關(guān)系,再利用點(diǎn)到直線的距離公式建立方程,求得a,b之間的關(guān)系,即可得到結(jié)果.【詳解】A選項(xiàng):因?yàn)橹本€l:SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以直線l過定點(diǎn)SKIPIF1<0,因?yàn)橹本€l與圓C恒有兩個(gè)公共點(diǎn),所以SKIPIF1<0,故A錯(cuò)誤;B選項(xiàng):因?yàn)橹本€l過定點(diǎn)SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),∠ACB最小,因?yàn)镾KIPIF1<0,所以此時(shí)直線l的斜率為SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故B正確;C選項(xiàng):設(shè)圓心C到直線l的距離為d,則SKIPIF1<0的面積SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,①SKIPIF1<0,即SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積最大,且SKIPIF1<0;②若SKIPIF1<0,即SKIPIF1<0,則函數(shù)S隨著d的增大而增大,所以SKIPIF1<0,綜上SKIPIF1<0的面積的最大值為SKIPIF1<0或SKIPIF1<0,故C錯(cuò)誤;D選項(xiàng):由C選項(xiàng)知,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的面積最大,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0,所以直線l的斜率SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,故D正確.故選:BD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:求解本題的關(guān)鍵:(1)整理直線方程,得到直線過的定點(diǎn)的坐標(biāo);(2)熟練掌握直線與圓的位置關(guān)系,并能利用平面幾何知識(shí)分析出圓心角何時(shí)最?。?2.(2023·遼寧沈陽·統(tǒng)考一模)已知圓SKIPIF1<0,點(diǎn)SKIPIF1<0是直線SKIPIF1<0上的動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,則下列說法正確的是(

)A.切線長SKIPIF1<0的最小值為SKIPIF1<0B.四邊形SKIPIF1<0面積的最小值為SKIPIF1<0C.若SKIPIF1<0是圓SKIPIF1<0的一條直徑,則SKIPIF1<0的最小值為SKIPIF1<0D.直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0【答案】ABD【分析】利用勾股定理可求得切線長SKIPIF1<0的最小值,可判斷A選項(xiàng);利用三角形的面積公式可判斷B選項(xiàng);利用平面向量數(shù)量積的運(yùn)算性質(zhì)以及SKIPIF1<0的最小值,可判斷C選項(xiàng);設(shè)點(diǎn)SKIPIF1<0,求出直線SKIPIF1<0的方程,可求得直線SKIPIF1<0恒過定點(diǎn)的坐標(biāo),可判斷D選項(xiàng).【詳解】圓心為SKIPIF1<0,圓SKIPIF1<0的半徑為SKIPIF1<0,由圓的幾何性質(zhì)可知,SKIPIF1<0,SKIPIF1<0.對(duì)于A選項(xiàng),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值,且SKIPIF1<0,所以,SKIPIF1<0,A對(duì);對(duì)于B選項(xiàng),由切線長定理可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,B對(duì);對(duì)于C選項(xiàng),易知SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0SKIPIF1<0,C錯(cuò);對(duì)于D選項(xiàng),設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以,以SKIPIF1<0為直徑的圓SKIPIF1<0的方程為SKIPIF1<0,即圓SKIPIF1<0的方程為SKIPIF1<0,將圓SKIPIF1<0的方程與圓SKIPIF1<0的方程作差可得SKIPIF1<0,即SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0,變形可得SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0,所以,直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,D對(duì).故選:ABD.三、填空題13.(2023·寧夏銀川·六盤山高級(jí)中學(xué)校考一模)圓心在直線SKIPIF1<0上,且過點(diǎn)SKIPIF1<0的圓的標(biāo)準(zhǔn)方程為__________.【答案】SKIPIF1<0【分析】先求得點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0確定線段的中垂線,再根據(jù)直線SKIPIF1<0上,兩方程聯(lián)立求得圓心,從而得到圓的半徑即可.【詳解】解:點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0確定直線的斜率為SKIPIF1<0,其中點(diǎn)為SKIPIF1<0,所以線段的中垂線方程為SKIPIF1<0,即SKIPIF1<0,又圓心在直線SKIPIF1<0上,由SKIPIF1<0,解得SKIPIF1<0,所以圓心為SKIPIF1<0,SKIPIF1<0,所以圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,故答案為:SKIPIF1<014.(2023·江西贛州·統(tǒng)考一模)已知函數(shù)SKIPIF1<0且SKIPIF1<0的圖像恒過定點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在圓SKIPIF1<0外,則符合條件的整數(shù)SKIPIF1<0的取值可以為__________.(寫出一個(gè)值即可)【答案】SKIPIF1<0(不唯一,取SKIPIF1<0的整數(shù)即可)【分析】先求定點(diǎn)SKIPIF1<0的坐標(biāo),結(jié)合點(diǎn)在圓外以及圓的限制條件可得SKIPIF1<0的取值.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的圖像恒過定點(diǎn)SKIPIF1<0,所以SKIPIF1<0;因?yàn)辄c(diǎn)SKIPIF1<0在圓SKIPIF1<0外,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;又SKIPIF1<0為整數(shù),所以SKIPIF1<0的取值可以為SKIPIF1<0.故答案為:SKIPIF1<0(不唯一,取SKIPIF1<0的整數(shù)即可).15.(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)??家荒#┕畔ED數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn)如下結(jié)論:“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值SKIPIF1<0的點(diǎn)的軌跡是圓”.在平面直角坐標(biāo)系中,已知點(diǎn)SKIPIF1<0,點(diǎn)P滿足SKIPIF1<0,設(shè)點(diǎn)P的軌跡為圓M,點(diǎn)M為圓心,若直線SKIPIF1<0與圓M相交于D,G兩點(diǎn),且SKIPIF1<0,則SKIPIF1<0____________.【答案】SKIPIF1<0或SKIPIF1<0【分析】設(shè)點(diǎn)SKIPIF1<0由SKIPIF1<0求出圓M方程,根據(jù)SKIPIF1<0截圓弦長SKIPIF1<0求得SKIPIF1<0值.【詳解】設(shè)點(diǎn)SKIPIF1<0SKIPIF1<0點(diǎn)SKIPIF1<0滿足SKIPIF1<0,∴SKIPIF1<0,化為:SKIPIF1<0,即點(diǎn)SKIPIF1<0的軌跡圓SKIPIF1<0,圓心SKIPIF1<0,半徑SKIPIF1<0.圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<016.(2023·河南·校聯(lián)考模擬預(yù)測(cè))圓SKIPIF1<0與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),點(diǎn)N滿足SKIPIF1<0,直線SKIPIF1<0與圓M和點(diǎn)N的軌跡同時(shí)相切,則直線l的斜率為________.【答案】SKIPIF1<0【分析】求出A、B坐標(biāo),設(shè)N(x,y),求出N的軌跡圓E的方程,作出圖象,利用圓的公切線的幾何性質(zhì)即可求其斜率.【詳解】對(duì)于圓SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,則點(diǎn)N的軌跡是圓心為SKIPIF1<0,半徑為SKIPIF1<0的圓.又圓M的方程為SKIPIF1<0,則圓M的圓心為SKIPIF1<0,半徑為SKIPIF1<0.∵SKIPIF1<0,∴兩圓相交,設(shè)直線l與圓M和點(diǎn)N軌跡圓E切點(diǎn)分別為C,D,連接CM,DE,過M作DE的垂線,垂足為點(diǎn)F,則四邊形CDFM為矩形,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,則兩圓公切線CD的斜率即為直線FM的斜率為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題17.(2022·云南昆明·昆明一中模擬預(yù)測(cè))已知點(diǎn)SKIPIF1<0,動(dòng)點(diǎn)M滿足SKIPIF1<0,點(diǎn)M的軌跡為曲線C.(1)求曲線C的軌跡方程;(2)曲線C上任意一點(diǎn)N(不同于A,B)和點(diǎn)A,B的連線分別與y軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn)求證:SKIPIF1<0為定值.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)結(jié)合SKIPIF1<0,由向量的坐標(biāo)運(yùn)算化簡(jiǎn)即可求解曲線C的軌跡方程;(2)設(shè)SKIPIF1<0,分別由點(diǎn)斜式求出直線SKIPIF1<0和直線SKIPIF1<0的方程,令SKIPIF1<0可求SKIPIF1<0,相乘即可求證.【詳解】(1)設(shè)點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,所以曲線SKIPIF1<0的軌跡方程為SKIPIF1<0;(2)設(shè)點(diǎn)SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.18.(2022·河南鶴壁·鶴壁高中??寄M預(yù)測(cè))已知圓SKIPIF1<0:SKIPIF1<0,點(diǎn)SKIPIF1<0是直線SKIPIF1<0:SKIPIF1<0上一動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0,SKIPIF1<0,切點(diǎn)分別是SKIPIF1<0和SKIPIF1<0.(1)試問直線SKIPIF1<0是否恒過定點(diǎn),若是求出這個(gè)定點(diǎn),若否說明理由;(2)直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求SKIPIF1<0的取值范圍(SKIPIF1<0為坐標(biāo)原點(diǎn)).【答案】(1)直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由題可知,SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0為直徑的圓上,利用兩圓方程,求得直線SKIPIF1<0的方程,即可求解.(2)直線與圓聯(lián)立方程組,利用韋達(dá)定理解決取值范圍.【詳解】(1)直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,由題意知SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0為直徑的圓上,又SKIPIF1<0,則以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0,即SKIPIF1<0,又圓SKIPIF1<0,即SKIPIF1<0,兩式相減,故直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,(2)由SKIPIF1<0,消去SKIPIF1<0,得SKIPIF1<0,直線與圓交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0,解得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理,有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,由二次函數(shù)的性質(zhì)可知,SKIPIF1<0的圖像拋物線開口向上,對(duì)稱軸方程為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的取值范圍為SKIPIF1<0.【提能力】一、單選題19.(2023·甘肅蘭州·蘭州五十九中??寄M預(yù)測(cè))在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-4x=0及點(diǎn)A(-1,0),B(1,2),在圓C上存在點(diǎn)P,使得|PA|2+|PB|2=12,則點(diǎn)P的個(gè)數(shù)為(

)A.1 B.2 C.3 D.4【答案】B【分析】設(shè)P(x,y),由SKIPIF1<0求得SKIPIF1<0點(diǎn)軌跡是圓,又SKIPIF1<0在已知圓上,判斷出兩圓相交后可得SKIPIF1<0點(diǎn)個(gè)數(shù).【詳解】設(shè)P(x,y),則(x-2)2+y2=4,|PA|2+|PB|2=(x+1)2+(y-0)2+(x-1)2+(y-2)2=12,即x2+y2-2y-3=0,即x2+(y-1)2=4,圓心為SKIPIF1<0,半徑為2,又圓SKIPIF1<0圓心為SKIPIF1<0,半徑為2,因?yàn)镾KIPIF1<0,所以圓(x-2)2+y2=4與圓x2+(y-1)2=4相交,所以點(diǎn)P的個(gè)數(shù)為2.故選:B.20.(2023·山東濰坊·??家荒#┮阎矫嫦蛄縎KIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意,求出SKIPIF1<0,建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,求出軌跡方程,利用幾何意義即可求出SKIPIF1<0的最大值.【詳解】由SKIPIF1<0可知,SKIPIF1<0,故SKIPIF1<0,如圖建立坐標(biāo)系,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的終點(diǎn)在以SKIPIF1<0為圓心,1為半徑的圓上,所以SKIPIF1<0,幾何意義為SKIPIF1<0到SKIPIF1<0距離的2倍,由兒何意義可知SKIPIF1<0,故選:D.21.(2023·浙江·永嘉中學(xué)校聯(lián)考模擬預(yù)測(cè))已知直角SKIPIF1<0的直角頂點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,若點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)圓的性質(zhì),結(jié)合圓與圓的位置關(guān)系進(jìn)行求解即可.【詳解】因?yàn)閳ASKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,直角SKIPIF1<0的直角頂點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,所以有SKIPIF1<0,因?yàn)橹苯荢KIPIF1<0的直角頂點(diǎn)為SKIPIF1<0,所以點(diǎn)A在以SKIPIF1<0為直徑的圓上,因此圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在圓SKIPIF1<0上,所以這兩個(gè)圓位置關(guān)系為相交或內(nèi)切或外切,所以有SKIPIF1<0,故選:C22.(2023·全國·校聯(lián)考模擬預(yù)測(cè))阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得?阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0的距離之比為定值SKIPIF1<0,且SKIPIF1<0的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,則下列說法錯(cuò)誤的是(

)A.SKIPIF1<0的方程為SKIPIF1<0B.當(dāng)SKIPIF1<0三點(diǎn)不共線時(shí),則SKIPIF1<0C.在C上存在點(diǎn)M,使得SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0【答案】C【分析】根據(jù)已知條件及兩點(diǎn)之間的距離公式,利用三角形的角平分線定理及圓與圓的位置關(guān)系,結(jié)合三點(diǎn)共線時(shí)線段取得最短即可求解.【詳解】設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0三點(diǎn)不共線時(shí),SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的角平分線,所以SKIPIF1<0,故B正確;設(shè)SKIPIF1<0,則SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以C上不存在點(diǎn)M,使得SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0在線段SKIPIF1<0上時(shí),等號(hào)成立,故D正確.故選:C.23.(2023·全國·模擬預(yù)測(cè))已知點(diǎn)P是圓SKIPIF1<0上一點(diǎn),若點(diǎn)P到直線SKIPIF1<0的距離為1,則滿足條件的點(diǎn)P的個(gè)數(shù)為(

)A.1 B.2 C.3 D.4【答案】C【分析】根據(jù)圓心到直線的距離即可求解.【詳解】由題意可知圓心為SKIPIF1<0,所以SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,故與直線SKIPIF1<0平行且過圓心的直線與圓相交的兩個(gè)交點(diǎn)即為滿足條件的點(diǎn)P,此時(shí)有兩個(gè),又圓的半徑為2,故當(dāng)過圓心且與SKIPIF1<0垂直的直線與圓的下半部分相交的一個(gè)點(diǎn)也符合,故共有3個(gè).故選:C24.(2023·四川涼山·統(tǒng)考一模)已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),過SKIPIF1<0作垂直SKIPIF1<0軸的直線交拋物線于SKIPIF1<0、SKIPIF1<0兩點(diǎn),以SKIPIF1<0為直徑的圓交SKIPIF1<0軸于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可知圓是以焦點(diǎn)為圓心,SKIPIF1<0為半徑的圓,根據(jù)弦長公式即得.【詳解】由題可知SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以以SKIPIF1<0為直徑的圓的半徑是SKIPIF1<0,圓心為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以拋物線方程SKIPIF1<0.故選:B.25.(2023·湖南長沙·統(tǒng)考一模)在平面直角坐標(biāo)系SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,若該平面中存在點(diǎn)SKIPIF1<0,同時(shí)滿足兩個(gè)條件SKIPIF1<0與SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)出點(diǎn)SKIPIF1<0坐標(biāo),根據(jù)SKIPIF1<0,求出點(diǎn)SKIPIF1<0的軌跡方程,根據(jù)SKIPIF1<0,可求出點(diǎn)SKIPIF1<0的另一個(gè)軌跡方程,只需這兩個(gè)方程的曲線無交點(diǎn)即可,利用圓與圓的位置關(guān)系列出等式求出范圍即可.【詳解】解:由題知,不妨設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)可得:SKIPIF1<0,故點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)可得:SKIPIF1<0,即點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上,故若存在點(diǎn)P,只需圓SKIPIF1<0與圓SKIPIF1<0有交點(diǎn)即可,即SKIPIF1<0,同時(shí)平方化簡(jiǎn)可得:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.所以不存在點(diǎn)P時(shí),SKIPIF1<0或SKIPIF1<0.故選:D26.(2022·北京·統(tǒng)考模擬預(yù)測(cè))在平面直角坐標(biāo)系中,已知點(diǎn)P在直線SKIPIF1<0上,且點(diǎn)P在第四象限,點(diǎn)SKIPIF1<0.以PQ為直徑的圓C與直線l的另外一個(gè)交點(diǎn)為T,滿足SKIPIF1<0,則圓C的直徑為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論