版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
答案第=page11頁,共=sectionpages22頁專題06函數(shù)的圖像、方程與零點【練基礎】一、單選題1.(2022·安徽·六安市裕安區(qū)新安中學高三階段練習)函數(shù)SKIPIF1<0的圖象大致為(
)A. B.C. D.【答案】D【分析】首先求出函數(shù)的定義域,再判斷函數(shù)的奇偶性,最后根據(jù)函數(shù)值的情況判斷即可.【詳解】解:因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),函數(shù)圖象關于SKIPIF1<0軸對稱,排除A,B;當SKIPIF1<0時SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,排除C.故選:D.2.(2022·安徽·安慶一中高三階段練習(文))已知函數(shù)SKIPIF1<0則方程SKIPIF1<0的解的個數(shù)是(
)A.0 B.1 C.2 D.3【答案】C【分析】函數(shù)SKIPIF1<0零點的個數(shù)即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的交點個數(shù),結合圖像分析.【詳解】令SKIPIF1<0,得SKIPIF1<0,則函數(shù)SKIPIF1<0零點的個數(shù)即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的交點個數(shù).作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像,可知兩個函數(shù)圖像的交點的個數(shù)為2,故方程SKIPIF1<0的解的個數(shù)為2個.故選:C.3.(2022·甘肅·高臺縣第一中學高三階段練習(文))如圖,SKIPIF1<0是邊長為2的正三角形,記SKIPIF1<0位于直線SKIPIF1<0左側的圖形的面積為SKIPIF1<0,則SKIPIF1<0的函數(shù)圖象是(
).A.B.C. D.【答案】A【分析】根據(jù)題意,求出函數(shù)解析式,據(jù)此分析選項,即可得答案【詳解】解:根據(jù)題意,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以只有A選項符合,故選:A4.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的圖像與函數(shù)SKIPIF1<0的圖像的交點個數(shù)為(
)A.2 B.3 C.4 D.0【答案】C【分析】作出兩個函數(shù)的圖像,由圖像可得交點個數(shù).【詳解】SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上是減函數(shù),在SKIPIF1<0和SKIPIF1<0上是增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作出函數(shù)SKIPIF1<0SKIPIF1<0的圖像,如圖,由圖像可知它們有4個交點.故選:C.5.(2021·云南省楚雄天人中學高三階段練習)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),在區(qū)間SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【分析】先根據(jù)題意畫出函數(shù)SKIPIF1<0的簡圖,再分SKIPIF1<0,SKIPIF1<0兩種情況討論,結合圖像解不等式即可【詳解】由題意,函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),在區(qū)間SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,可畫出函數(shù)簡圖如下圖所示:當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0;綜上不等式SKIPIF1<0的解集為:SKIPIF1<0或SKIPIF1<0故選:D6.(2021·甘肅省民樂縣第一中學高三階段練習(理))函數(shù)SKIPIF1<0在SKIPIF1<0的零點個數(shù)為()A.2 B.3 C.4 D.5【答案】B【解析】令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,再根據(jù)x的取值范圍可求得零點.【詳解】由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0在SKIPIF1<0的零點個數(shù)是3,故選B.【點睛】本題考查在一定范圍內(nèi)的函數(shù)的零點個數(shù),滲透了直觀想象和數(shù)學運算素養(yǎng).采取特殊值法,利用數(shù)形結合和方程思想解題.7.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的所有零點之和為(
)A.0 B.2 C.4 D.6【答案】B【分析】結合函數(shù)的對稱性求得正確答案.【詳解】令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0圖象關于SKIPIF1<0對稱,在SKIPIF1<0上遞減.SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),圖象關于原點對稱,所以SKIPIF1<0圖象關于SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0與SKIPIF1<0有兩個交點,兩個交點關于SKIPIF1<0對稱,所以函數(shù)SKIPIF1<0的所有零點之和為SKIPIF1<0.故選:B8.(2022·河南·高三階段練習(理))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有4個零點,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】轉化為兩個函數(shù)交點問題分析【詳解】SKIPIF1<0即SKIPIF1<0分別畫出SKIPIF1<0和SKIPIF1<0的函數(shù)圖像,則兩圖像有4個交點所以SKIPIF1<0,即SKIPIF1<0故選:C二、多選題9.(2021·重慶市第十一中學校高三階段練習)關于函數(shù)SKIPIF1<0,正確的說法是(
)A.SKIPIF1<0有且僅有一個零點B.SKIPIF1<0在定義域內(nèi)單調(diào)遞減C.SKIPIF1<0的定義域為SKIPIF1<0D.SKIPIF1<0的圖象關于點SKIPIF1<0對稱【答案】ACD【分析】將函數(shù)SKIPIF1<0分離系數(shù)可得SKIPIF1<0,數(shù)形結合,逐一分析即可;【詳解】解:SKIPIF1<0,作出函數(shù)SKIPIF1<0圖象如圖:由圖象可知,函數(shù)只有一個零點,定義域為SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,圖象關于SKIPIF1<0對稱,故B錯誤,故選:ACD.10.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0為減函數(shù)C.SKIPIF1<0有且只有一個零點 D.SKIPIF1<0的值域為SKIPIF1<0【答案】AC【分析】化簡函數(shù)解析式,分析函數(shù)的奇偶性,單調(diào)性,值域,零點即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0為奇函數(shù),又SKIPIF1<0,SKIPIF1<0在R上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即函數(shù)值域為SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故函數(shù)有且只有一個零點0.綜上可知,AC正確,BD錯誤.故選:AC11.(2022·湖南省祁東縣育賢中學高三階段練習)如圖是函數(shù)SKIPIF1<0的部分圖像,則(
)A.SKIPIF1<0的最小正周期為SKIPIF1<0B.將函數(shù)SKIPIF1<0的圖像向右平移SKIPIF1<0個單位后,得到的函數(shù)為奇函數(shù)C.SKIPIF1<0是函數(shù)SKIPIF1<0的一條對稱軸D.若函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有兩個零點,則SKIPIF1<0【答案】AD【分析】先根據(jù)圖像可得SKIPIF1<0,即可判斷A,接下來求得SKIPIF1<0,即可得到SKIPIF1<0的解析式,根據(jù)圖像平移判斷B,令SKIPIF1<0解出SKIPIF1<0即可判斷C,令SKIPIF1<0,解出函數(shù)零點,然后根據(jù)在SKIPIF1<0上有且僅有兩個零點列出不等式解SKIPIF1<0即可判斷D【詳解】由圖像可知,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,故A正確SKIPIF1<0
此時SKIPIF1<0又SKIPIF1<0在圖像上,SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0將SKIPIF1<0的圖像向右平移SKIPIF1<0個單位后得到的圖像對應的解析式為SKIPIF1<0不為奇函數(shù),故B錯誤SKIPIF1<0,SKIPIF1<0SKIPIF1<0當SKIPIF1<0是函數(shù)SKIPIF1<0的一條對稱軸時,此時SKIPIF1<0不符合題意,故C錯誤令SKIPIF1<0,解得SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,不合題意SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0又因為函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有兩個零點SKIPIF1<0,解得SKIPIF1<0,故D正確故選:AD12.(2021·福建·福清西山學校高三階段練習)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0恰有2個零點,則實數(shù)m可以是(
)A.SKIPIF1<0 B.0 C.1 D.2【答案】ABC【分析】轉化為函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0恰有兩個交點,畫出函數(shù)SKIPIF1<0的圖象,根據(jù)圖象可得解.【詳解】因為函數(shù)SKIPIF1<0恰有2個零點,所以函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0恰有兩個交點,畫出函數(shù)SKIPIF1<0的圖象如圖:由圖可知,SKIPIF1<0或SKIPIF1<0,結合選項,因此SKIPIF1<0可以為-1,0,1.故選:ABC.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,進而構造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結合的方法求解.三、填空題13.(2020·廣東·北京師范大學珠海分校附屬外國語學校高三階段練習)若函數(shù)f(x)=x2-ax-b的兩個零點分別是是2和3,則函數(shù)g(x)=bx2-ax-1的零點為____________.【答案】SKIPIF1<0【詳解】主要考查二次函數(shù)零點的性質(zhì)及零點的確定方法.首先將2,3分別代入方程SKIPIF1<0-ax-b=0,求得a,b,然后解方程bSKIPIF1<0-ax-1=0,得到函數(shù)g(x)零點.14.(2022·全國·高三專題練習(理))若函數(shù)SKIPIF1<0的一個零點為SKIPIF1<0,則常數(shù)SKIPIF1<0的一個取值為___________.【答案】SKIPIF1<0【分析】根據(jù)零點的概念及特殊角的三角函數(shù)值即可求解.【詳解】因為函數(shù)SKIPIF1<0的一個零點為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0時,滿足條件,SKIPIF1<0是常數(shù)SKIPIF1<0的一個取值.故答案為:SKIPIF1<015.(2021·福建省南平市高級中學高三階段練習)若方程SKIPIF1<0的實根在區(qū)間SKIPIF1<0上,則SKIPIF1<0_______.【答案】-2或1【分析】依題意可得SKIPIF1<0,在同一平面直角坐標系中作出函數(shù)SKIPIF1<0與SKIPIF1<0的圖象,結合函數(shù)圖象即可判斷方程的根所在區(qū)間,即可得解;【詳解】解:由于方程SKIPIF1<0,顯然SKIPIF1<0,所以SKIPIF1<0,在同一平面直角坐標系中作出函數(shù)SKIPIF1<0與SKIPIF1<0的圖象,由圖象上可得出:方程SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0內(nèi)各有一個實根.所以SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0.16.(2022·北京·北師大實驗中學高三階段練習)若函數(shù)SKIPIF1<0有兩個零點,則實數(shù)SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0有兩個零點,和的圖象有兩個交點,畫出和的圖象,如圖,要有兩個交點,那么四、解答題17.(2021·寧夏·青銅峽市寧朔中學高三階段練習(文))若函數(shù)SKIPIF1<0.(1)在所給的坐標系內(nèi)畫出函數(shù)SKIPIF1<0圖像;(2)求方程SKIPIF1<0恰有三個不同實根時的實數(shù)SKIPIF1<0的取值范圍.【答案】(1)圖象見解析;(2)SKIPIF1<0.【分析】(1)結合二次函數(shù)的圖象與性質(zhì),對數(shù)函數(shù)的圖象與性質(zhì)利用描點法作函數(shù)的圖象,(2)觀察SKIPIF1<0圖象,根據(jù)SKIPIF1<0的圖象與SKIPIF1<0的圖象有三個交點確定m的范圍.【詳解】(1)作圖如下:(2)方程SKIPIF1<0有3個解等價于函數(shù)SKIPIF1<0的圖象與SKIPIF1<0的圖象有三個交點,觀察圖象可得SKIPIF1<0.18.(2022·河南·模擬預測(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)在給出的平面直角坐標系中畫出SKIPIF1<0和SKIPIF1<0的圖象;(2)若關于x的不等式SKIPIF1<0恒成立,求實數(shù)a的取值范圍.【答案】(1)詳見解析;(2)SKIPIF1<0.【分析】(1)根據(jù)絕對值函數(shù)分區(qū)間去絕對值后變成分段函數(shù),然后作圖;(2)由題可得SKIPIF1<0,然后利用數(shù)形結合可得參數(shù)取值范圍.【詳解】(1)由題意得:SKIPIF1<0,SKIPIF1<0,畫出SKIPIF1<0和SKIPIF1<0的圖象如圖所示.(2)∵SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,要使SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)a的取值范圍為SKIPIF1<0.19.(2020·內(nèi)蒙古·巴彥淖爾市臨河區(qū)第三中學高三階段練習(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的解析式.(2)若方程SKIPIF1<0有實數(shù)根,求實數(shù)a的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)考查了函數(shù)解析式的求解,需要采用換元法,設SKIPIF1<0,表示出SKIPIF1<0,再寫出SKIPIF1<0,最后換元成SKIPIF1<0即可;(2)SKIPIF1<0有實根,轉化為SKIPIF1<0SKIPIF1<0,所以需要求函數(shù)SKIPIF1<0的值域,再解不等式.【詳解】解:(1)設SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0;且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;(2)設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當SKIPIF1<0時函數(shù)有最小值SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【點睛】本題主要考查的是換元法求函數(shù)的解析式,利用函數(shù)值域求參數(shù)范圍的問題,需要注意:(1)采用換元法求解函數(shù)解析式時,注意換元必換域,不要漏掉SKIPIF1<0的范圍;(2)求解參數(shù)范圍時需要轉化為求解函數(shù)的最值問題,即求函數(shù)的值域,再利用SKIPIF1<0的范圍解不等式即可,需要注意定義域的限制.20.(2022·山東省青島第九中學高三階段練習)已知函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間,(2)若函數(shù)SKIPIF1<0有三個零點,求實數(shù)m的取值范圍.【答案】(1)單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0;(2)SKIPIF1<0【分析】(1)根據(jù)題意,列出方程組求得SKIPIF1<0,得到SKIPIF1<0,進而求得函數(shù)的單調(diào)區(qū)間;(2)由題意得到SKIPIF1<0,結合條件列出不等式組,即得.【詳解】(1)由題可得SKIPIF1<0,由題意得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0;(2)因為SKIPIF1<0,由(1)可知,SKIPIF1<0在SKIPIF1<0處取得極大值,在SKIPIF1<0處取得極小值,SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0,依題意,要使SKIPIF1<0有三個零點,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗,SKIPIF1<0,根據(jù)零點存在定理,可以確定函數(shù)有三個零點,所以m的取值范圍為SKIPIF1<0.21.(2021·貴州·遵義一中高三階段練習(理))已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在范圍SKIPIF1<0上存在零點,求SKIPIF1<0的取值范圍;(2)當SKIPIF1<0時,求函數(shù)SKIPIF1<0的最小值SKIPIF1<0.【答案】(1)SKIPIF1<0
(2)SKIPIF1<0【分析】(1)參變分離轉化為存在SKIPIF1<0,使得SKIPIF1<0成立,求導分析SKIPIF1<0的單調(diào)性和取值范圍,即得解;(2)函數(shù)SKIPIF1<0對稱軸為SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況討論,即得解【詳解】(1)由題意,函數(shù)SKIPIF1<0在范圍SKIPIF1<0上存在零點即存在SKIPIF1<0,使得SKIPIF1<0成立令SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0(舍)所以當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,又SKIPIF1<0SKIPIF1<0即SKIPIF1<0的取值范圍是SKIPIF1<0(2)SKIPIF1<0,對稱軸為SKIPIF1<0當SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0;綜上:SKIPIF1<022.(2020·江蘇省盱眙中學高三階段練習)已知SKIPIF1<0是偶函數(shù).(1)求SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有公共點,求a的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由偶函數(shù)的定義結合對數(shù)的運算性質(zhì)可求出實數(shù)SKIPIF1<0的值;(2)利用參變量分離法得出關于SKIPIF1<0的方程SKIPIF1<0有解,然后利用指數(shù)函數(shù)和對數(shù)的函數(shù)的基本性質(zhì)求出SKIPIF1<0的取值范圍,即可得出實數(shù)SKIPIF1<0的取值范圍.【詳解】(1)SKIPIF1<0是偶函數(shù),SKIPIF1<0,SKIPIF1<0,化簡得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0對任意的SKIPIF1<0都成立,SKIPIF1<0;(2)由題意知,方程SKIPIF1<0有解,亦即SKIPIF1<0,即SKIPIF1<0有解,SKIPIF1<0有解,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.【點睛】本題考查利用函數(shù)的奇偶性求參數(shù),同時也考查了利用函數(shù)的零點個數(shù)求參數(shù),涉及對數(shù)運算性質(zhì)的應用,靈活利用參變量分離法能簡化計算,考查運算求解能力,屬于中等題.【提能力】一、單選題1.(2020·全國·高三專題練習(文))函數(shù)SKIPIF1<0的圖像大致為()A. B.C. D.【答案】B【詳解】分析:通過研究函數(shù)奇偶性以及單調(diào)性,確定函數(shù)圖像.詳解:SKIPIF1<0為奇函數(shù),舍去A,SKIPIF1<0舍去D;SKIPIF1<0,所以舍去C;因此選B.點睛:有關函數(shù)圖象識別問題的常見題型及解題思路(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復.2.(2019·全國·高三專題練習)如圖所示,設點SKIPIF1<0是單位圓上的一定點,動點SKIPIF1<0從點SKIPIF1<0出發(fā)在圓上按逆時針方向旋轉一周,點SKIPIF1<0所旋轉過的SKIPIF1<0的長為SKIPIF1<0,弦SKIPIF1<0的長為SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象大致是(
)A. B.C. D.【答案】C【解析】取SKIPIF1<0的中點為SKIPIF1<0,設SKIPIF1<0,在直角三角形求出SKIPIF1<0的表達式,根據(jù)弧長公式求出SKIPIF1<0的表達式,再用SKIPIF1<0表示SKIPIF1<0,再根據(jù)解析式得答案.【詳解】取SKIPIF1<0的中點為SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,根據(jù)正弦函數(shù)的圖象知,C中的圖象符合解析式.故選:C.【點睛】本題考查正弦函數(shù)的圖象,考查弧長公式,其中表示出弦長SKIPIF1<0和弧長SKIPIF1<0的解析式是解題的關鍵,屬于基礎題.3.(2008·四川·高考真題(理))直線SKIPIF1<0繞原點逆時針旋轉SKIPIF1<0,再向右平移1個單位,所得到的直線為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】∵直線SKIPIF1<0繞原點逆時針旋轉SKIPIF1<0的直線為SKIPIF1<0,從而淘汰(C),(D)又∵將SKIPIF1<0向右平移1個單位得SKIPIF1<0,即SKIPIF1<0故選A;【點評】此題重點考察互相垂直的直線關系,以及直線平移問題;【突破】熟悉互相垂直的直線斜率互為負倒數(shù),過原點的直線無常數(shù)項;重視平移方法:“左加右減”;4.(2022·全國·高三專題練習)定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,若關于x的方程SKIPIF1<0至少有8個實數(shù)解,則實數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)條件可得出函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),作出SKIPIF1<0,SKIPIF1<0的圖象,根據(jù)函數(shù)為偶函數(shù),原問題可轉化為當SKIPIF1<0時兩函數(shù)圖象至少有4個交點,根據(jù)數(shù)形結合求解即可.【詳解】因為SKIPIF1<0,且SKIPIF1<0為偶函數(shù)所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),作出SKIPIF1<0,SKIPIF1<0在同一坐標系的圖象,如圖,因為方程SKIPIF1<0至少有8個實數(shù)解,所以SKIPIF1<0,SKIPIF1<0圖象至少有8個交點,根據(jù)SKIPIF1<0,SKIPIF1<0的圖象都為偶函數(shù)可知,圖象在y軸右側至少有4個交點,由圖可知,當SKIPIF1<0時,只需SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,只需SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,由圖可知顯然成立,綜上可知,SKIPIF1<0.故選:B5.(2021·全國·高三專題練習)如圖,函數(shù)SKIPIF1<0的圖象由一條射線和拋物線的一部分構成,SKIPIF1<0的零點為SKIPIF1<0,若不等式SKIPIF1<0對SKIPIF1<0恒成立,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由條件可知,SKIPIF1<0的圖象是由SKIPIF1<0向左平移SKIPIF1<0個單位長度得到,再利用數(shù)形結合,分析圖象的臨界條件,得到SKIPIF1<0的取值范圍.【詳解】當SKIPIF1<0時,SKIPIF1<0,圖象過點SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,設拋物線SKIPIF1<0,代入點SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的圖象是由SKIPIF1<0向左平移SKIPIF1<0個單位長度得到,因為SKIPIF1<0,對SKIPIF1<0恒成立,所以SKIPIF1<0的圖象恒在SKIPIF1<0的上方,當兩圖象如圖所示,相切時,拋物線SKIPIF1<0SKIPIF1<0,SKIPIF1<0,與直線SKIPIF1<0相切,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,切點SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.故選:A【點睛】關鍵點點睛:本題考查根據(jù)不等式恒成立,求參數(shù)的取值范圍,本題的關鍵是數(shù)形結合,分析臨界條件,利用直線與拋物線相切,求參數(shù)的取值范圍.6.(2023·全國·高三專題練習)正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則實數(shù)SKIPIF1<0之間的大小關系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0只有一個交點,從而可得SKIPIF1<0在SKIPIF1<0只有一個根SKIPIF1<0,令SKIPIF1<0,然后利用零點存在性定理可求得SKIPIF1<0,同理可求出SKIPIF1<0的范圍,從而可比較出SKIPIF1<0的大小【詳解】SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0只有一個交點,則SKIPIF1<0在SKIPIF1<0只有一個根SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0只有一個交點,則SKIPIF1<0在SKIPIF1<0只有一個根SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0只有一個交點,則SKIPIF1<0在SKIPIF1<0只有一個根SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0故選:A.7.(2022·全國·高三專題練習)設函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為(
)A.1個 B.2個 C.3個 D.4個【答案】C【分析】畫出函數(shù)SKIPIF1<0的草圖,分析函數(shù)的值域及SKIPIF1<0的解,由SKIPIF1<0解的個數(shù),可得答案【詳解】函數(shù)SKIPIF1<0的圖象如圖所示,由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,由圖象可知方程有兩個實根,當SKIPIF1<0時,SKIPIF1<0,由圖象可知,方程有1個實根,綜上,方程SKIPIF1<0有3個實根,所以函數(shù)SKIPIF1<0的零點個數(shù)為3,故選:C8.(2020·全國·高三專題練習(理))已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上的所有零點之和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】把函數(shù)g(x)SKIPIF1<0f(x)﹣cosπx的零點轉化為兩函數(shù)y=f(x)與y=cosπx圖象交點的橫坐標,再由已知可得函數(shù)f(x)的對稱軸與周期,作出函數(shù)y=f(x)與y=cosπx的圖象,數(shù)形結合得答案.【詳解】函數(shù)g(x)SKIPIF1<0f(x)﹣cosπx的零點,即方程f(x)﹣cosπx=0的根,也就是兩函數(shù)y=f(x)與y=cosπx圖象交點的橫坐標.由f(x)是定義在R上的偶函數(shù),且SKIPIF1<0可得函數(shù)周期為2.又當SKIPIF1<0時,SKIPIF1<0,作出函數(shù)y=f(x)與y=cosπx的圖象如圖:由圖可知,函數(shù)g(x)SKIPIF1<0f(x)﹣cosπx在區(qū)間[﹣2,4]上的所有零點之和為﹣SKIPIF1<02+SKIPIF1<02+SKIPIF1<02=6.故選:C.【點睛】本題考查函數(shù)零點的判定,考查數(shù)形結合的解題思想方法和數(shù)學轉化思想方法,是中檔題.二、多選題9.(2023·全國·高三專題練習)對任意兩個實數(shù)SKIPIF1<0,定義SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,下列關于函數(shù)SKIPIF1<0的說法正確的是(
)A.函數(shù)SKIPIF1<0是偶函數(shù)B.方程SKIPIF1<0有三個解C.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增D.函數(shù)SKIPIF1<0有4個單調(diào)區(qū)間【答案】ABD【分析】結合題意作出函數(shù)SKIPIF1<0的圖象,進而數(shù)形結合求解即可.【詳解】解:根據(jù)函數(shù)SKIPIF1<0與SKIPIF1<0,,畫出函數(shù)SKIPIF1<0的圖象,如圖.由圖象可知,函數(shù)SKIPIF1<0關于y軸對稱,所以A項正確;函數(shù)SKIPIF1<0的圖象與x軸有三個交點,所以方程SKIPIF1<0有三個解,所以B項正確;函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以C項錯誤,D項正確.故選:ABD10.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有四個不同的實根SKIPIF1<0,滿足SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.函數(shù)SKIPIF1<0的零點為SKIPIF1<0【答案】BCD【分析】由解析式可得函數(shù)圖象,由方程有四個不等實根可得到SKIPIF1<0與SKIPIF1<0有四個不同的交點,從而確定四個根的范圍和SKIPIF1<0的取值范圍;由SKIPIF1<0可化簡知A錯誤;由SKIPIF1<0與SKIPIF1<0關于直線SKIPIF1<0對稱知B正確;根據(jù)SKIPIF1<0與SKIPIF1<0是方程SKIPIF1<0的根,結合韋達定理和SKIPIF1<0的取值范圍可知C正確;由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,由此可確定零點知D正確.【詳解】由解析式可得SKIPIF1<0圖象如下圖所示:若SKIPIF1<0有四個不同的實數(shù)根,則SKIPIF1<0與SKIPIF1<0有四個不同的交點,由圖象可知:SKIPIF1<0,SKIPIF1<0;對于A,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,整理可得:SKIPIF1<0,A錯誤;對于B,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0關于直線SKIPIF1<0對稱,SKIPIF1<0,B正確;對于C,SKIPIF1<0與SKIPIF1<0是方程SKIPIF1<0的兩根,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,C正確;對于D,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0SKIPIF1<0的根為SKIPIF1<0;SKIPIF1<0的根為SKIPIF1<0,SKIPIF1<0的零點為SKIPIF1<0,D正確.故選:BCD.11.(2022·山東·日照國開中學高三階段練習)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù)B.SKIPIF1<0C.函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象有且僅有SKIPIF1<0個交點D.當SKIPIF1<0時,SKIPIF1<0【答案】ACD【分析】推導出函數(shù)SKIPIF1<0的周期,可判斷A選項的正誤;求出SKIPIF1<0、SKIPIF1<0的值,可判斷B選項的正誤;數(shù)形結合可判斷C選項的正誤;求出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的解析式,可判斷D選項的正誤.【詳解】對于A選項,由已知條件可得SKIPIF1<0,所以,函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),A選項正確;對于B選項,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,B選項錯誤;對于C選項,作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象如下圖所示:當SKIPIF1<0時,SKIPIF1<0,結合圖象可知,SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象無交點,由圖可知,函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有SKIPIF1<0個交點,C選項正確;對于D選項,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,D選項正確.故選:ACD.【點睛】方法點睛:判定函數(shù)SKIPIF1<0的零點個數(shù)的常用方法:(1)直接法:直接求解函數(shù)對應方程的根,得到方程的根,即可得出結果;(2)數(shù)形結合法:先令SKIPIF1<0,將函數(shù)SKIPIF1<0的零點個數(shù),轉化為對應方程的根,進而轉化為兩個函數(shù)圖象的交點個數(shù),結合圖象,即可得出結果.12.(2020·全國·高三專題練習)已知函數(shù)f(x)=x,g(x)=x-4,則下列結論正確的是(
)A.若h(x)=f(x)g(x),則函數(shù)h(x)的最小值為4B.若h(x)=f(x)|g(x)|,則函數(shù)h(x)的值域為RC.若h(x)=|f(x)|-|g(x)|,則函數(shù)h(x)有且僅有一個零點D.若h(x)=|f(x)|-|g(x)|,則|h(x)|≤4恒成立【答案】BCD【解析】對選項逐一分析,由此確定結論正確的選項.【詳解】對于A選項,SKIPIF1<0,當SKIPIF1<0時,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,所以A選項錯誤.對于B選項,SKIPIF1<0,畫出SKIPIF1<0圖像如下圖所示,由圖可知,SKIPIF1<0的值域為SKIPIF1<0,故B選項正確.對于C選項,SKIPIF1<0,畫出SKIPIF1<0圖像如下圖所示,由圖可知,SKIPIF1<0有唯一零點SKIPIF1<0,故C選項正確.對于D選項,由C選項的分析,結合SKIPIF1<0圖像可知SKIPIF1<0恒成立,故D選項正確.故選:BCD【點睛】本小題主要考查函數(shù)的最值、值域和零點,考查分段函數(shù),考查數(shù)形結合的思想方法,屬于基礎題.三、填空題13.(2022·全國·高三專題練習)已知偶函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0恰有4個不同的零點,則實數(shù)SKIPIF1<0的取值范圍為__________【答案】SKIPIF1<0【分析】作出函數(shù)SKIPIF1<0的圖象,將問題轉化為函數(shù)SKIPIF1<0與SKIPIF1<0有4個不同的交點,由圖示可得答案.【詳解】解:作出函數(shù)SKIPIF1<0的圖象如下圖所示,令SKIPIF1<0,則SKIPIF1<0,若函數(shù)SKIPIF1<0恰有4個不同的零點,則需函數(shù)SKIPIF1<0與SKIPIF1<0有4個不同的交點,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<0.14.(2020·上海·高三專題練習)已知函數(shù)f(x)=logax+x-b(a>0,且a≠1).當2<a<3<b<4時,函數(shù)f(x)的零點為x0∈(n,n+1),n∈N*,則n=.【答案】2【分析】把要求零點的函數(shù),變成兩個基本初等函數(shù),根據(jù)所給的a,b的值,可以判斷兩個函數(shù)的交點的所在的位置,同所給的區(qū)間進行比較,得到n的值.【詳解】設函數(shù)y=logax,m=﹣x+b根據(jù)2<a<3<b<4,對于函數(shù)y=logax在x=2時,一定得到一個值小于1,而b-2>1,x=3時,對數(shù)值在1和2之間,b-3<1在同一坐標系中畫出兩個函數(shù)的圖象,判斷兩個函數(shù)的圖形的交點在(2,3)之間,∴函數(shù)f(x)的零點x0∈(n,n+1)時,n=2.故答案為2.考點:二分法求方程的近似解;對數(shù)函數(shù)的圖象與性質(zhì).15.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0SKIPIF1<0.若SKIPIF1<0存在2個零點,則SKIPIF1<0的取值范圍是__________【答案】SKIPIF1<0【分析】由SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川西南航空職業(yè)學院《視傳藝術考察》2023-2024學年第一學期期末試卷
- 2024年花卉產(chǎn)業(yè)扶貧項目合作合同協(xié)議3篇
- 二零二五年度按揭貸款房屋改造貸款合同范本2篇
- 2024影視行業(yè)人才中介服務合同
- 二零二五版戶外廣告牌制作、安裝與維護全流程服務合同3篇
- 紹興文理學院元培學院《影視動畫海報設計》2023-2024學年第一學期期末試卷
- 個人所得稅代扣代繳協(xié)議(2024年版)
- 二零二五年度水泥管行業(yè)市場競爭策略合同
- 二零二五年度專業(yè)安保公司員工勞動合同范本2篇
- 山東輕工職業(yè)學院《期貨投資》2023-2024學年第一學期期末試卷
- 《胃癌靶向治療》課件
- 2024-2025學年遼寧省沈陽市高一上學期1月期末質(zhì)量監(jiān)測數(shù)學試題(含解析)
- 《少兒主持人》課件
- 北京市朝陽區(qū)2024-2025學年高二上學期期末考試生物試卷(含答案)
- 2025年西藏拉薩市柳梧新區(qū)城市投資建設發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 2025年部編版一年級語文上冊期末復習計劃
- 儲罐維護檢修施工方案
- 地理2024-2025學年人教版七年級上冊地理知識點
- 2024 消化內(nèi)科專業(yè) 藥物臨床試驗GCP管理制度操作規(guī)程設計規(guī)范應急預案
- 2024-2030年中國電子郵箱行業(yè)市場運營模式及投資前景預測報告
- 基礎設施零星維修 投標方案(技術方案)
評論
0/150
提交評論