版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省長沙縣、攸縣、醴陵、瀏陽四縣一中高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,,則()A. B. C. D.2.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1203.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.20204.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.5.設(shè)為的兩個(gè)零點(diǎn),且的最小值為1,則()A. B. C. D.6.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.7.若θ是第二象限角且sinθ=,則=A. B. C. D.8.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對稱9.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.10.設(shè),則關(guān)于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線11.一個(gè)正四棱錐形骨架的底邊邊長為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.12.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為______.14.正四棱柱中,,.若是側(cè)面內(nèi)的動點(diǎn),且,則與平面所成角的正切值的最大值為___________.15.已知等比數(shù)列的前項(xiàng)和為,,且,則__________.16.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點(diǎn).(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知()過點(diǎn),且當(dāng)時(shí),函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個(gè)單位得到函數(shù),求函數(shù)的表達(dá)式;(2)在(1)的條件下,函數(shù),求在上的值域.20.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.21.(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,其前項(xiàng)和為,且為與的等差中項(xiàng).(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項(xiàng)和.22.(10分)已知函數(shù).(1)當(dāng)a=2時(shí),求不等式的解集;(2)設(shè)函數(shù).當(dāng)時(shí),,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點(diǎn)睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補(bǔ)集關(guān)系的應(yīng)用,屬于中檔題.2、C【解析】
觀察規(guī)律得根號內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
首先,根據(jù)二倍角公式和輔助角公式化簡函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點(diǎn)睛】本題重點(diǎn)考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關(guān)鍵,屬于中檔題.4、A【解析】
設(shè),延長至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點(diǎn)睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.5、A【解析】
先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個(gè)零點(diǎn),且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點(diǎn)睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.6、C【解析】
由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.7、B【解析】由θ是第二象限角且sinθ=知:,.所以.8、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.9、D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點(diǎn)睛】本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.10、C【解析】
根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實(shí)軸在y軸上的雙曲線,
故選C.【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.11、B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.12、C【解析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計(jì)算可得輸出為25時(shí)的值,進(jìn)而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時(shí)輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項(xiàng)可知C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點(diǎn),能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點(diǎn),∴,∴雙曲線方程為,故答案為:.【點(diǎn)睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運(yùn)用,屬于中檔題.14、2.【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對于這類題,一般是建立空間直角坐標(biāo),在動點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.15、【解析】
由題意知,繼而利用等比數(shù)列的前項(xiàng)和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和求和公式,屬于中檔題.16、【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個(gè)元素與其它兩個(gè)元素合起來全排列,同時(shí)它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點(diǎn)坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)時(shí),滿足面.證明如下,取中點(diǎn),連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、(1)證明見解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因?yàn)?,故,所以四邊形為菱形,而平面,?因?yàn)?,故,故,即四邊形為正方形,?(2)依題意,.在正方形中,,故以為原點(diǎn),所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因?yàn)?,所?所以.設(shè)平面的法向量為,則,即,令,則.于是.又因?yàn)?,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.19、(1);(2).【解析】
試題分析:(1)由題意可得函數(shù)f(x)的解析式為,則.(2)整理函數(shù)h(x)的解析式可得:,結(jié)合函數(shù)的定義域可得函數(shù)的值域?yàn)?試題解析:(1)由函數(shù)取得最大值1,可得,函數(shù)過得,,∵,∴,.(2),,,值域?yàn)?20、(1)(2)證明見解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)?,,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時(shí),,,單調(diào)遞增,當(dāng),時(shí),,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.21、(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當(dāng)時(shí),,當(dāng)時(shí),再利用進(jìn)行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項(xiàng)公式,再化簡出,可直接求出的前10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東海事職業(yè)學(xué)院《制冷技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東工藝美術(shù)學(xué)院《技術(shù)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小背心衣服創(chuàng)意課程設(shè)計(jì)
- 家具行業(yè)電子商務(wù)平臺建設(shè)與運(yùn)營考核試卷
- 安全防護(hù)在移動醫(yī)療的數(shù)據(jù)隱私考核試卷
- 放大電路課程設(shè)計(jì)
- 新聞寫作課程設(shè)計(jì)
- 小白菜課程設(shè)計(jì)
- 文字排版海報(bào)課程設(shè)計(jì)
- 《基于玻璃粉燒實(shí)驗(yàn)的材料語言應(yīng)用研究》
- 【泰禾房地產(chǎn)集團(tuán)償債能力探析案例報(bào)告(定量論文)7800字】
- 語文第15課《梅嶺三章》課件 2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- 巖體力學(xué)與工程智慧樹知到答案2024年合肥工業(yè)大學(xué)
- 2025屆高考數(shù)學(xué)復(fù)習(xí) 函數(shù)導(dǎo)數(shù) 備考策略分析課件
- 科室VTE工作總結(jié)課件
- 中標(biāo)方轉(zhuǎn)讓合同協(xié)議書
- 二年級上冊數(shù)學(xué)教案-小小測量員 (2)-西師大版
- 人教版(2024)七年級地理上冊3.2《世界的地形》精美課件
- APQC跨行業(yè)流程分類框架(PCF)V7.4版-2024年8月21日版-雷澤佳編譯
- 《2023-2024中國區(qū)塊鏈發(fā)展年度報(bào)告》
- 國家開放大學(xué)本科《理工英語3》一平臺機(jī)考總題庫2025珍藏版
評論
0/150
提交評論