




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省孝感市八校教學(xué)聯(lián)盟2025屆高考考前模擬數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.2.設(shè)不等式組,表示的平面區(qū)域?yàn)?,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.3.若θ是第二象限角且sinθ=,則=A. B. C. D.4.已知數(shù)列中,,(),則等于()A. B. C. D.25.過拋物線的焦點(diǎn)且與的對(duì)稱軸垂直的直線與交于,兩點(diǎn),,為的準(zhǔn)線上的一點(diǎn),則的面積為()A.1 B.2 C.4 D.86.如圖所示,直三棱柱的高為4,底面邊長(zhǎng)分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.6427.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.38.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.29.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.10.已知集合A,則集合()A. B. C. D.11.2019年10月17日是我國第6個(gè)“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種12.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時(shí)期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿足勾股定理,則______.14.經(jīng)過橢圓中心的直線與橢圓相交于、兩點(diǎn)(點(diǎn)在第一象限),過點(diǎn)作軸的垂線,垂足為點(diǎn).設(shè)直線與橢圓的另一個(gè)交點(diǎn)為.則的值是________________.15.在的展開式中的系數(shù)為,則_______.16.已知向量=(1,2),=(-3,1),則=______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點(diǎn)為,當(dāng)變化時(shí),點(diǎn)的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點(diǎn)為射線與曲線的交點(diǎn),求點(diǎn)的極徑.18.(12分)如圖,在正四棱錐中,,點(diǎn)、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長(zhǎng).19.(12分)如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn),.(Ⅰ)證明:;(Ⅱ)若為上的動(dòng)點(diǎn),求與平面所成最大角的正切值.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點(diǎn),求線段的長(zhǎng).22.(10分)為了解廣大學(xué)生家長(zhǎng)對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門對(duì)該市家長(zhǎng)進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問卷調(diào)查,每一位學(xué)生家長(zhǎng)僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請(qǐng)利用正態(tài)分布的知識(shí)求;(2)該市食品安全檢測(cè)部門為此次參加問卷調(diào)查的學(xué)生家長(zhǎng)制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測(cè)部門預(yù)計(jì)參加此次活動(dòng)的家長(zhǎng)約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?附:①;②若;則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點(diǎn)睛】熟悉復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的性質(zhì).2、A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡(jiǎn)單題.3、B【解析】由θ是第二象限角且sinθ=知:,.所以.4、A【解析】
分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數(shù)列是以3為周期的周期數(shù)列,
,
,
故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】
設(shè)拋物線的解析式,得焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,這樣可設(shè)點(diǎn)坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點(diǎn)為,對(duì)稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過拋物線的焦點(diǎn),,是與的交點(diǎn),又軸,∴可設(shè)點(diǎn)坐標(biāo)為,代入,解得,又∵點(diǎn)在準(zhǔn)線上,設(shè)過點(diǎn)的的垂線與交于點(diǎn),,∴.故應(yīng)選C.【點(diǎn)睛】本題考查拋物線的性質(zhì),解題時(shí)只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點(diǎn)坐標(biāo),從而求得參數(shù)的值.本題難度一般.6、A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c7、A【解析】
由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.8、B【解析】
化簡(jiǎn)得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.9、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡(jiǎn),然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.10、A【解析】
化簡(jiǎn)集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.11、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計(jì)算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B【點(diǎn)睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時(shí),要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.12、B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.14、【解析】
作出圖形,設(shè)點(diǎn),則、,設(shè)點(diǎn),利用點(diǎn)差法得出,利用斜率公式得出,進(jìn)而可得出,可得出,由此可求得的值.【詳解】設(shè)點(diǎn),則、,設(shè)點(diǎn),則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.【點(diǎn)睛】本題考查橢圓中角的余弦值的求解,涉及了點(diǎn)差法與斜率公式的應(yīng)用,考查計(jì)算能力,屬于中等題.15、2【解析】
首先求出的展開項(xiàng)中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時(shí)有,解得.故答案為:.【點(diǎn)睛】本題主要考查了二項(xiàng)式展開項(xiàng)的系數(shù),屬于簡(jiǎn)單題.16、-6【解析】
由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,由可得代入曲線C的方程可得,解得(舍),所以點(diǎn)的極徑為.【點(diǎn)睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,極徑的求法,屬于中檔題.18、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點(diǎn)為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補(bǔ)可求得.試題解析:(1)連結(jié)AC、BD交于點(diǎn)O,以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系.因?yàn)镻A=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因?yàn)椋?,所以MN⊥AD(2)解:因?yàn)镸在PA上,可設(shè)=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設(shè)平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因?yàn)槠矫鍭BD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點(diǎn):用空間向量法證垂直、求二面角.19、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長(zhǎng)為2的菱形,平面,,易證平面,可得;(Ⅱ)連結(jié),由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點(diǎn),∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結(jié),由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當(dāng)且僅當(dāng)最短,即時(shí)最大,依題意,此時(shí),在中,,∴,,∴與平面所成最大角的正切值為.考點(diǎn):1.線線垂直證明;2.求線面角.20、(1)(2)【解析】
(1)利用消參法以及點(diǎn)求解出的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化求解出直線的極坐標(biāo)方程;(2)將的坐標(biāo)設(shè)為,利用點(diǎn)到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時(shí)對(duì)應(yīng)的值.【詳解】(1)消去參數(shù)得普通方程為,將代入,可得,即所以的極坐標(biāo)方程為(2)的直角坐標(biāo)方程為直線的直角坐標(biāo)方程設(shè)的直角坐標(biāo)為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當(dāng),時(shí)取得最小值即,∴【點(diǎn)睛】本題考查直線的參數(shù)方程、普通方程、極坐標(biāo)方程的互化以及根據(jù)曲線上一點(diǎn)到直線距離的最值求參數(shù),難度一般.(1)直角坐標(biāo)和極坐標(biāo)的互化公式:;(2)求解曲線上一點(diǎn)到直線的距離的最值,可優(yōu)先考慮將點(diǎn)的坐標(biāo)設(shè)為參數(shù)方程的形式,然后再去求解.21、【解析】
由,化簡(jiǎn)得,由,所以直線的直角坐標(biāo)方程為,因?yàn)榍?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江廣廈建設(shè)職業(yè)技術(shù)大學(xué)《中國城市建設(shè)史》2023-2024學(xué)年第二學(xué)期期末試卷
- 鄂爾多斯應(yīng)用技術(shù)學(xué)院《管理會(huì)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 炎黃職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)繪圖及BM應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 煙臺(tái)職業(yè)學(xué)院《足球理論與實(shí)踐Ⅲ》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年吉林省建筑安全員《B證》考試題庫
- 浙江機(jī)電職業(yè)技術(shù)學(xué)院《BIM技術(shù)原理及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州師范學(xué)院《微機(jī)原理與接口技術(shù)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年安徽省建筑安全員知識(shí)題庫附答案
- 四川三河職業(yè)學(xué)院《建筑與環(huán)境設(shè)計(jì)方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 邢臺(tái)應(yīng)用技術(shù)職業(yè)學(xué)院《體育教學(xué)訓(xùn)練理論與方法實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 痛風(fēng)護(hù)理疑難病例討論
- 韓國語入門教學(xué)資料
- 《大學(xué)生職業(yè)能力訓(xùn)練》
- 人民警察忠誠品質(zhì)
- 冠狀動(dòng)脈搭橋手術(shù)后的健康生活促進(jìn)
- 《英國飲食文化》課件
- 《SolidWorks建模實(shí)例教程》第4章 綜合應(yīng)用實(shí)例
- JCT2110-2012 室內(nèi)空氣離子濃度測(cè)試方法
- 視頻號(hào)運(yùn)營(yíng)規(guī)則
- 文印服務(wù)投標(biāo)方案(技術(shù)方案)
- 初三語文總復(fù)習(xí)全程計(jì)劃表
評(píng)論
0/150
提交評(píng)論