2025屆全國一卷五省優(yōu)創(chuàng)名校高考數(shù)學(xué)五模試卷含解析_第1頁
2025屆全國一卷五省優(yōu)創(chuàng)名校高考數(shù)學(xué)五模試卷含解析_第2頁
2025屆全國一卷五省優(yōu)創(chuàng)名校高考數(shù)學(xué)五模試卷含解析_第3頁
2025屆全國一卷五省優(yōu)創(chuàng)名校高考數(shù)學(xué)五模試卷含解析_第4頁
2025屆全國一卷五省優(yōu)創(chuàng)名校高考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆全國一卷五省優(yōu)創(chuàng)名校高考數(shù)學(xué)五模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.2.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]3.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q4.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.5.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則6.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.7.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,8.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.9.若時,,則的取值范圍為()A. B. C. D.10.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.11.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③12.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐中,平面,,已知,,則當(dāng)最大時,三棱錐的體積為__________.14.某部隊在訓(xùn)練之余,由同一場地訓(xùn)練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.15.已知為等差數(shù)列,為其前n項和,若,,則_______.16.平面向量,,(R),且與的夾角等于與的夾角,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.18.(12分)設(shè)數(shù)列,的各項都是正數(shù),為數(shù)列的前n項和,且對任意,都有,,,(e是自然對數(shù)的底數(shù)).(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和.19.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點的切線方程;(2)討論函數(shù)的單調(diào)性.20.(12分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當(dāng)直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標(biāo)為(1)求橢圓的方程;(2)點為內(nèi)一點,為坐標(biāo)原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.21.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點個數(shù).22.(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運(yùn)算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2、B【解析】

作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關(guān)系可得結(jié)論.3、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運(yùn)用、幾何概型的特征與計算公式的運(yùn)用等知識與方法的綜合運(yùn)用,以及分析問題解決問題的能力。4、C【解析】

由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.5、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.6、A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進(jìn)行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.7、D【解析】

由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選【點睛】本題主要考查的是的圖像的運(yùn)用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標(biāo)求出結(jié)果8、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.9、D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.10、C【解析】試題分析:設(shè)的交點為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.11、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.12、B【解析】

由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè),則,,,,當(dāng)且僅當(dāng),即時,等號成立.,故答案為414、【解析】

分兩步進(jìn)行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.15、1【解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以.故答案為1.【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關(guān)于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應(yīng)用.16、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標(biāo)運(yùn)算與向量夾角三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線表示的是焦點為,準(zhǔn)線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準(zhǔn)方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準(zhǔn)線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入得,由直線參數(shù)方程的幾何意義可知,.18、(1),(2)【解析】

(1)當(dāng)時,,與作差可得,即可得到數(shù)列是首項為1,公差為1的等差數(shù)列,即可求解;對取自然對數(shù),則,即是以1為首項,以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,,①當(dāng)時,,解得;當(dāng)時,有,②由①②得,,又,所以,即數(shù)列是首項為1,公差為1的等差數(shù)列,故,又因為,且,取自然對數(shù)得,所以,又因為,所以是以1為首項,以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點睛】本題考查由與的關(guān)系求通項公式,考查錯位相減法求數(shù)列的和.19、(1);(2)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】

(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關(guān)系進(jìn)而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當(dāng)時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當(dāng)時,,所以當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減;②當(dāng)時,,所以當(dāng)和時,;當(dāng)時,,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當(dāng)時,,所以在上恒成立.所以在上單調(diào)遞增;④當(dāng)時,,所以和時,;時,.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點,再根據(jù)極值點的大小關(guān)系分類討論即可.屬于??碱}.20、(1);(2)或【解析】

(1)由橢圓的定義可知,焦點三角形的周長為,從而求出.寫出直線的方程,與橢圓方程聯(lián)立,根據(jù)交點橫坐標(biāo)為,求出和,從而寫出橢圓的方程;(2)設(shè)出P、Q兩點坐標(biāo),由可知點為的重心,根據(jù)重心坐標(biāo)公式可將點用P、Q兩點坐標(biāo)來表示.由點在圓O上,知點M的坐標(biāo)滿足圓O的方程,得式.為直線l與橢圓的兩個交點,用韋達(dá)定理表示,將其代入方程,再利用求得的范圍,最終求出實數(shù)的取值范圍.【詳解】解:(1)由題意知.,直線的方程為∵直線與橢圓的另一個交點的橫坐標(biāo)為解得或(舍去),∴橢圓的方程為(2)設(shè).∴點為的重心,∵點在圓上,由得,代入方程,得,即由得解得.或【點睛】本題考查了橢圓的焦點三角形的周長,標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系,其中重心坐標(biāo)公式、韋達(dá)定理的應(yīng)用是關(guān)鍵.考查了學(xué)生的運(yùn)算能力,屬于較難的題.21、(Ⅰ);(Ⅱ)證明見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論