版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
CenterforSecurityandEmergingTechnology|1
ThisworkshopandtheproductionofthefinalreportwasmadepossiblebyagenerouscontributionfromtheMicrosoftCorporation.Theviewsinthisdocumentarestrictlytheauthors’anddonotnecessarilyrepresenttheviewsoftheU.S.government,the
MicrosoftCorporation,orofanyinstitution,organization,orentitywithwhichtheauthorsmaybeaffiliated.
Referencetoanyspecificcommercialproduct,process,orservicebytradename,
trademark,manufacturer,orotherwise,doesnotconstituteorimplyanendorsement,recommendation,orfavoringbytheU.S.government,includingtheU.S.DepartmentoftheTreasury,theU.S.DepartmentofHomelandSecurity,andtheCybersecurityand
InfrastructureSecurityAgency,oranyotherinstitution,organization,orentitywithwhichtheauthorsmaybeaffiliated.
CenterforSecurityandEmergingTechnology|2
ExecutiveSummary
Asartificialintelligencecapabilitiescontinuetoimprove,criticalinfrastructure(CI)
operatorsandprovidersseektointegratenewAIsystemsacrosstheirenterprises;
however,thesecapabilitiescomewithattendantrisksandbenefits.AIadoptionmayleadtomorecapablesystems,improvementsinbusinessoperations,andbettertoolstodetectandrespondtocyberthreats.Atthesametime,AIsystemswillalso
introducenewcyberthreatsthatCIprovidersmustcontendwith.Lastyear’sAI
executiveorderdirectedthevariousSectorRiskManagementAgencies(SRMAs)to
“evaluateandprovide…anassessmentofpotentialrisksrelatedtotheuseofAIin
criticalinfrastructuresectorsinvolved,includingwaysinwhichdeployingAImaymakecriticalinfrastructuresystemsmorevulnerabletocriticalfailures,physicalattacks,andcyber-attacks.”
Despitetheexecutiveorder’srecentdirection,AIuseincriticalinfrastructureisnot
new.AItoolsthatexcelinpredictionandanomalydetectionhavebeenusedforcyberdefenseandotherbusinessactivitiesformanyyears.Forexample,providershavelongreliedoncommercialinformationtechnologysolutionsthatarepoweredbyAIto
detectmaliciousactivity.WhathaschangedisthatnewgenerativeAItechniqueshavebecomemorecapableandoffernovelopportunitiesforCIoperators.Potentialuses
includemorecapablechatbotsforcustomerinteraction,enhancedthreatintelligencesynthesisandprioritization,fastercodeproductionprocesses,and,morerecently,AIagentsthatcanperformactionsbasedonuserprompts.
CIoperatorsandsectorsareattemptingtonavigatethisrapidlychanginganduncertainlandscape.Fortunately,thereareanaloguesfromcybersecuritythatwecandrawon.Yearsago,innovationsinnetworkconnectivityprovidedCIoperatorswithawayto
remotelymonitorandoperatemanysystems.However,thisalsocreatednewattackvectorsformaliciousactors.PastlessonscanhelpinformhoworganizationsapproachtheintegrationofAIsystems.Today,riskmayariseintwoways:fromAIvulnerabilitiesorfailuresinsystemsdeployedwithinCIandfromthemalicioususeofAIsystems
againstCIsectors.
Thisworkshopreportprovidestechnicalmitigationsandpolicyrecommendationsfor
managingtheuseofAIincriticalinfrastructure.Severalfindingsandrecommendationsemergedfromthisdiscussion.
●ResourcedisparitiesbetweenCIproviderswithinandacrosssectorshavea
majorimpactontheprospectsofAIadoptionandmanagementofAI-relatedrisks.Furtherprogramsareneededtosupportlesswell-resourcedproviders
CenterforSecurityandEmergingTechnology|3
withAI-relatedassistance,includingfinancialresources,datafortraining
models,requisitetalentandstaff,forumsforcommunication,andavoiceinthebroaderAIdiscourse.Expandingformalandinformalmeansofmutual
assistancecouldhelpclosethedisparitygap.Theseinitiativesshareresources,talent,andknowledgeacrossorganizationstoimprovethesecurityand
resiliencyofthesectorasawhole.Theyincludeformalprograms,suchas
sharingpersonnelinresponsetoincidentsoremergencies,andinformaleffortssuchasdevelopingbestpracticesorvettingproductsandservices.
●ThereisarecognizedneedtointegrateAIriskmanagementintoexisting
enterpriseriskmanagementpractices;however,ownershipofAIriskcanbe
ambiguouswithincurrentcorporatestructures.ThisriskwasreferredtobyoneparticipantastheAI“hotpotato”beingtossedaroundtheC-suite.Aclear
designationofresponsibilityforAIriskwithinthecorporatestructureisneeded.
●AmbiguitybetweenAIsafetyandAIsecurityalsoposessubstantialchallengestooperationalizingAIriskmanagement.OrganizationsareoftenunsurehowtoapplyguidancefromtheNationalInstituteofStandardsandTechnology’s
recentlypublishedAIriskmanagementframeworkalongsidethecybersecurityframework.FurtherguidanceonhowtoimplementaunifiedapproachtoAIriskisneeded.Tailoringandprioritizingthisguidancewouldhelpmakeitmoreaccessibletolesswell-resourcedprovidersandthosewithspecific,often
bespoke,needs.
●Whiletherearewell-establishedchannelsforcybersecurityinformationsharing,thereisnoanalogueinthecontextofAI.SRMAsshouldleverageexisting
venues,suchastheInformationSharingandAnalysisCenters,forAIsecurityinformationsharing.SharingAIsafetyissues,mitigations,andbestpracticesisalsocritical,butthechannelstodosoareunclear.ClarityonwhatconstitutesanAIincident,whichincidentsshouldbereported,thethresholdsforreporting,andwhetherexistingcyber-incidentreportingchannelsaresufficientwouldbe
valuable.Topromotecross-sectorvisibilityandanalysisthatspansbothAIsafetyandsecurity,thesectorsshouldconsiderestablishingacentralizedanalysiscenterforAIsafetyandsecurity.
●SkillstomanagecyberandAIrisksaresimilarbutnotidentical.The
implementationofAIsystemswillrequireexpertisethatmanyCIprovidersdonotcurrentlyhave.Assuch,providersandoperatorsshouldactivelyupskilltheircurrentworkforcesandseekopportunitiestocross-trainstaffwith
CenterforSecurityandEmergingTechnology|4
relevantcybersecurityskillstoeffectivelyaddresstherangeofAI-andcyber-relatedrisks.
●GenerativeAIintroducesnewissuesthatcanbemoredifficulttomanageand
thatwarrantcloseexamination.CIprovidersshouldremaincautiousand
informedbeforeadoptingnewerAItechnologies,particularlyforsensitiveormission-criticaltasks.Assessingwhetheranorganizationisevenreadyto
adoptthesesystemsisacriticalfirststep.
CenterforSecurityandEmergingTechnology|5
TableofContents
ExecutiveSummary 2
Introduction 6
Background 7
ResearchMethodology 7
TheCurrentandFutureUseofAIinCriticalInfrastructure 8
Figure1.ExamplesofAIUseCasesinCriticalInfrastructurebySector 10
Risks,Opportunities,andBarriersAssociatedwithAI 11
Risks 11
Opportunities 12
BarrierstoAdoption 13
Observations 14
DisparitiesBetweenandWithinSectors 14
UnclearBoundaryBetweenAIandCybersecurity 16
ChallengesinAIRiskManagement 17
FracturedGuidanceandRegulation 18
Recommendations 21
Cross-CuttingRecommendations 21
ResponsibleGovernmentDepartmentsandAgencies 23
Sectors 25
Organizations 25
CriticalInfrastructureOperators 26
AIDevelopers 26
Authors 28
AppendixA:BackgroundResearchSources 29
Government/Intergovernmental 29
Science/Academia/NongovernmentalOrganizations/FederallyFundedResearch
andDevelopmentCenters/Industry 29
DocumentsMentionedDuringWorkshop 30
Endnotes 31
CenterforSecurityandEmergingTechnology|6
Introduction
InOctober2023,theWhiteHousereleasedanExecutiveOrderontheSafe,Secure,
andTrustworthyDevelopmentandUseofArtificialIntelligence.Section4.3ofthe
orderspecificallyfocusesonthemanagementofAIincriticalinfrastructureand
cybersecurity
.1
WhileregulatorsdebatestrategiesforgoverningAIatthestate,
federal,andinternationallevels,protectingCIremainsatoppriorityformany
stakeholders.However,therearenumerousoutstandingquestionsonhowbesttoaddressAI-relatedriskstoCI,giventhefracturedregulatorylandscapeandthe
diversityamongthe16CIsectors.
Toaddresssomeofthesequestions,theCenterforSecurityandEmergingTechnology(CSET)hostedanin-personworkshopinJune2024thatbroughttogether
representativesfromtheU.S.federalgovernment,thinktanks,industry,academia,andfiveCIsectors(communications,informationtechnology,water,energy,andfinancialservices).ThediscussionwasframedaroundtheissueofsecurityinCI,includingtheriskfrombothAI-enabledcyberthreatsandpotentialvulnerabilitiesorfailuresin
deployedAIsystems.Theintentionoftheworkshopwastofosteracandid
conversationaboutthecurrentstateofAIincriticalinfrastructure,identify
opportunitiesandrisks—particularlyrelatedtocybersecurity—presentedbyAI
adoption,andrecommendtechnicalmitigationsandpolicyoptionsformanagingtheuseofAIandmachinelearningincriticalsystems.
ThediscussionfocusedonCIintheUnitedStates,withsomelimitedconversationontheglobalregulatorylandscape.Thisreportsummarizestheworkshop’sfindingsinfourprimarysections.TheBackgroundsectioncontainsCSETresearchonthecurrentandpotentialfutureuseofAItechnologiesinvariousCIsectors.TheRisks,
Opportunities,andBarrierssectionaddressestheseissuesassociatedwithAIthatparticipantsraisedoverthecourseoftheworkshop.Thethirdsection,Observations,categorizesvariousthemesfromthediscussion,andthereportconcludeswith
Recommendations,whichareorganizedbytargetaudience(government,CIsectors,andindividualorganizationswithinboththesectorsandtheAIindustry).
CenterforSecurityandEmergingTechnology|7
Background
Inpreparationforthisworkshop,CSETresearchersexaminedthereportssubmittedbyvariousfederaldepartmentsandagenciesinresponsetotheWhiteHouseAIexecutiveorder,section4.3.ThesereportsprovidedinsightintohowsomeCIownersand
operatorsarealreadyusingAIwithintheirsector,butitwassometimesunclearwhattypesofAIsystemsCIproviderswereemployingorconsidering.Forexample,theU.S.DepartmentofEnergy(DOE)summaryreportoverviewedthepotentialforusingAI-directedorAI-assistedsystemstosupportthecontrolofenergyinfrastructure,butitdidnotspecifywhethertheseweregenerativeAIortraditionalmodels.Thiswasthecaseformanyofthesourcesandusecasesassessedforthebackgroundresearch,
spanninginformationtechnology(IT),operationaltechnology(OT),andsector-specificusecases.ThisambiguityreducesvisibilityintothecurrentstateofAIadoptionacrosstheCIsectors,limitingtheeffectivenessofecosystemmonitoringandriskassessment.
ThissectionsummarizesCSET’spreliminaryresearchfortheworkshopandprovidesexamplesofmanyofthecurrentandpotentialfutureAIusecasesinthreesectors—
financialservices,water,andenergy—basedonfederalagencyreporting.
ResearchMethodology
TheU.S.DepartmentofHomelandSecurity(DHS)recentlyreleasedguidelinesforCIownersandoperatorsthatcategorizeover150individualAIusecasesinto10
categories
.2
Whilethereportencompassedall16CIsectors,theusecaseswerenotspecified.ToidentifyAIusecasesforthesectorsthatparticipatedintheworkshop,weassessedreportsfromtheU.S.DepartmentoftheTreasury(financialservices),DOE(energy),andtheU.S.EnvironmentalProtectionAgency(EPA,water).Wealso
examinedtheAIinventoriesforeachdepartmentandagency,buttheyonlyincludedusecasesinternaltothoseorganizations,notthesectorsgenerally.
TheTreasuryandDOEreportswerewrittenfollowingtheAIexecutiveorder,were
relativelycomprehensive,andconsideredmanyAIusecases
.3
Furtherusecasesinthefinanceandenergysectorswerepulledfromnongovernmentalsources(e.g.,the
JournalofRiskandFinancialManagementandIndigoAdvisoryGroup)
.4
TheEPA
sourcesweredatedandlackeddetailsonAIusecases
.5
Toidentifymoreusecasesinthewatersector,weassessedliteraturereviewsfromWaterResourcesManagement(aforumforpublicationsonthemanagementofwaterresources)andWater(ajournalonwaterscienceandtechnology)
.6
AlthoughweprimarilyfocusedonsourcescoveringU.S.CI,someresearchencompassedCIabroad.Afulllistofsourcescanbefoundin
AppendixA.
CenterforSecurityandEmergingTechnology|8
TheCurrentandFutureUseofAIinCriticalInfrastructure
WeclassifyAIusecasesinCIintothreebroadcategories:IT,OT,andsector-specific
usecases.ITencompassestheuseofAIfor“traditional”cybersecuritytaskssuchasnetworkmonitoring,anomalydetection,andclassificationofsuspiciousemails.AllCIsectorsuseIT,andthereforetheyallhavethepotentialtouseAIinthiscategory.OTencompassesAIuseinmonitoringorcontrollingphysicalsystemsandinfrastructure,suchasindustrialcontrolsystems.Sector-specificusecasesincludetheuseofAIfordetectingfraudinthefinancialsectororforecastingpowerdemandintheenergy
sector.ThesebroadcategoriesprovideasharedframeofreferenceandcapturethebreadthofAIusecasesacrosssectors.However,theyarenotmeanttobe
comprehensiveorconveythedepthofAIuse(orlackthereof)acrossorganizationswithinsectors.
WhendiscussingusecasesforCI,weconsiderabroadspectrumofAIapplications.
WhilenewertechnologiessuchasgenerativeAI(e.g.,largelanguagemodels)have
recentlybeentopofmindformanypolicymakers,moretraditionaltypesofmachine
learningsystems,includingpredictiveAIsystemsthatforecastandidentifypatternswithindata(asopposedtogeneratingcontent),havelongbeenusedinCI.ThevariousAIsystemspresentdifferingopportunitiesandchallenges,butgenerativeAI
introducesnewissuesthatcanbemoredifficulttomanageandthatwarrantcloseexamination.Thisincludesdifficultiesininterpretinghowmodelsprocessinputs,
explainingtheiroutputs,managingunpredictablebehaviors,andidentifying
hallucinationsandfalseinformation.Evenmorerecently,generativemodelshavebeenusedtopowerAIagents,enablingthesemodelstotakemoredirectactionintherealworld.Althoughthesesystemsarestillnascent,theirpotentialtoautomatetasks—
whetherroutineworkstreamsorcyberattacks—deservesclosewatching.
ThemesinAI-CIusecasesfromthereportsexaminedinclude:
?ManyITusecasesemployAItosupplementexistingcybersecuritypracticesandhavecommonalitiesacrosssectors.Forexample,AIisoftenusedtodetect
maliciouseventsorthreatsinIT,beitatafinancialfirmorwaterfacility.SomeAIITusecases,suchasscanningsecuritylogsforanomalies,gobacktothe1990s.Othershaveemergedoverthepast20years,suchasanomalousor
maliciouseventdetection.NewpotentialusecaseshavesurfacedwiththerecentadventofgenerativeAI,suchasmitigatingcodevulnerabilitiesandanalyzingthreatactorbehavior.
CenterforSecurityandEmergingTechnology|9
?Basedonreportedusecases,therearenoexplicitexamplesofgenerativeAI
beingusedinOT.WhilesomeapplicationsoftraditionalAIarebeingused,suchasininfrastructureoperationalawareness,broaderadoptionisstillfairlylimited.ThisisinpartduetoconcernsovercausingerrorsincriticalOT.However,futureusecasesarebeingactivelyconsidered,suchasreal-timecontrolofenergy
infrastructurewithhumansintheloop.
?Manysector-specificAIusecasesseektoimprovethereliability,robustness,
andefficiencyofCI.However,theyalsoraiseconcernsaboutdataprivacy,
cybersecurity,AIsecurity,andtheneedforgovernanceframeworkstoensureresponsibleAIdeployment.Itcanbemorechallengingtoimplementacommonriskmanagementframeworkfortheseusecasesbecausetheyarespecializedandhavelimitedoverlapacrosssectors.
?AIadoptionvarieswidelyacrossCIsectors.Organizationsacrosseachsectorhavevaryingtechnicalexpertise,funding,experienceintegratingnew
technologies,regulatoryorlegalconstraints,anddataavailability.Moreover,itisnotclearwhethercertainAIusecaseswereactivelybeingimplemented,
consideredinthenearterm,orfeasibleinthelongterm.ManyofthepotentialAIusecaseshighlightedinrelevantliteraturearetheoretical,withexperimentsconductedonlyinlaboratory,controlled,orlimitedsettings.Oneexampleisaproposedintelligentirrigationsystemprototypeforefficientwaterusagein
agriculturewhichwasdevelopedusingdatacollectedfromreal-world
environments,butnottestedinthefield
.7
Thefeasibilityofimplementingtheseapplicationsinpracticeandacrossorganizationsiscurrentlyunclear.
?ThedepthofAIuseacrossorganizationswithinsectorsisdifficulttoassess.
Therearethousandsoforganizationsacrossthefinancial,energy,andwater
sectors.ItisunknownhowmanyorganizationswithinthesesectorsareusingorwilluseAI,forwhatpurposes,andhowtherisksfromthosedifferentusecases
vary.
Figure1aggregatesallAIusecasesidentifiedinthepreliminaryresearch
.*
EachsectorisdividedintoIT,OT,andsector-specificusecasesandsubdividedintocurrent/near-termandlong-termusecases.
Figure1.ExamplesofAIUseCasesinCriticalInfrastructurebySector
Source:CSET(SeeAppendixA).
+Thesourcesexaminedduringourpreliminaryresearchdidnotcontainanycurrent,near-term,orfutureexamplesofAIusecasesinfinancialsectorOT,currentornear-termexamplesofAIusecasesinwatersectorOTorIT,noranyfutureAIusecasesinenergysectorIT.
CenterforSecurityandEmergingTechnology|10
CenterforSecurityandEmergingTechnology|11
Risks,Opportunities,andBarriersAssociatedwithAI
AsevidencedbythewiderangeofcurrentandpotentialusecasesforAIincritical
infrastructure,manyworkshopparticipantsexpressedinterestinadoptingAI
technologiesintheirrespectivesectors.However,manywerealsoconcernedaboutthebroadandunchartedspectrumofrisksassociatedwithAIadoption,bothfromexternalmaliciousactorsandfrominternaldeploymentofAIsystems.CIsectorsalsofacea
varietyofbarrierstoAIadoption,evenforusecasesthatmaybeimmediately
beneficialtothem.Thissectionwillbrieflysummarizethediscussionconcerningthese
threetopics:risks,opportunities,andbarrierstoadoption.
Risks
AIriskistwofold,encompassingbothmalicioususeofAIsystemsandAIsystemvulnerabilitiesorfailures.Thissubsectionwilladdressbothofthesecategories,
startingwithrisksfrommalicioususe,whichseveralworkshopparticipantsraised
concernsaboutgiventhecurrentprevalenceofcyberattacksonU.S.critical
infrastructure.TheseconcernsincludedhowAImighthelpmaliciousactorsdiscovernewattackvectors,conductreconnaissanceandmappingofcomplexCInetworks,andmakecyberattacksmoredifficulttodetectordefendagainst.AI-poweredtoolslowerthebarriertoentryformaliciousactors,givingthemanew(andpotentiallylow-cost)waytosynthesizevastamountsofinformationtoconductcyberandphysicalsecurityattacks.However,theadditionofAIalonedoesnotnecessarilypresentanovelthreat,asCIsystemsarealreadytargetsforvariouscapableandmotivatedcyberactors
.8
MostconcernsaboutAIinthiscontextcenteredonitspotentialtoenableattacksthatmaynotcurrentlybepossibleorincreasetheseverityoffutureattacks.Amore
transformativeuseofAIbyattackerscouldinvolveseekingimprovedinsightsastowhatsystemsanddataflowstodisruptorcorrupttoachievethegreatestimpact.
GenerativeAIcapabilitiesarecurrentlyincreasingthreatstoCIprovidersincertain
cases.Thesethreatsincludeenhancedspearphishing,enabledbylargelanguage
models.Researchershaveobservedthreatactorsexploringthecapabilitiesof
generativeAIsystems,whicharenotnecessarilygame-changingbutcanbefairly
usefulacrossawiderangeoftaskssuchasscripting,reconnaissance,translation,andsocialengineering
.9
Furthermore,asAIdevelopersstrivetoimprovegenerative
models’capabilitiesbyenablingthemodeltouseexternalsoftwaretoolsandinteract
withotherdigitalsystems,digital“agents”thatcantranslategeneralhumaninstructionsintoexecutablesubtasksmaysoonbeusedforcyberoffense.
CenterforSecurityandEmergingTechnology|12
TheotherriskcategoryparticipantsidentifiedwasrelatedtoAIadoption,suchasthepotentialfordataleakage,alargercybersecurityattacksurface,andgreatersystem
complexity.Dataleakagewasasignificantconcern,regardingboththepossibilityofaCIoperator’sdatabeingstoredexternally(suchasbyanAIprovider)andthepotentialforsensitiveinformationtoaccidentallyleakduetoemployeeusageofAI(suchasbypromptinganexternallargelanguagemodel).
IncorporatingAIsystemscouldalsoincreaseaCIoperator’scybersecurityattack
surfaceinnew—orunknown—ways,especiallyiftheAIsystemisusedforeitherOTorIT.(AusecaseencompassingOTandIT,whicharetypicallystrictlyseparatedwith
firewallstolimittheriskofcompromise,wouldincreasetheattacksurfaceeven
further.)Forcertainsectors,participantspointedoutthatevenmappinganoperator’snetworkstoevaluateanAIsystem’susefulness—andsubsequentlystoringorsharingthatsensitiveinformation—couldpresentatargetformotivatedthreatactors.CI
operatorsfacemoreconstraintsthanorganizationsinotherindustriesandthereforeneedtobeextracautiousaboutdisclosinginformationabouttheirsystems.NewerAIproducts,especiallygenerativeAIsystems,mayalsofailunexpectedlybecauseitisimpossibletothoroughlytesttheentirerangeofinputstheymightreceive.
Finally,AIsystems’complexitypresentsachallengefortestingandevaluation,
especiallygiventhatsomesystemsarenotfullyexplainable(inthesenseofnotbeingabletotracetheprocessesthatleadtotherelationshipbetweeninputsandoutputs).RisksassociatedwithcomplexityarecompoundedbythefactthatthereisagenerallackofexpertiseattheintersectionofAIandcriticalinfrastructure,bothwithintheCI
communityandonthepartofAIproviders.
Opportunities
DespiteacknowledgmentoftherisksassociatedwiththeuseofAI,therewasgeneralagreementamongparticipantsthattherearemanybenefitstousingAItechnologiesincriticalinfrastructure.
AItechnologiesarealreadyinuseinseveralsectorsfortaskssuchasanomaly
detection,operationalawareness,andpredictiveanalytics.Thesearerelativelymatureusecasesthatrelyonolder,establishedformsofAIandmachinelearning(suchas
classificationsystems)ratherthannewergenerativeAItools.
OtheropportunitiesforAIadoptionacrossCIsectorsincludeissuetriageor
prioritization(suchasforfirstresponders),thefacilitationofinformationsharinginthecybersecurityorfraudcontexts,forecasting,threathunting,SecurityOperationsCenter
CenterforSecurityandEmergingTechnology|13
(SOC)operations,andpredictivemaintenanceofOTsystems.Moregenerally,
participantswereinterestedinAI’spotentialtohelpusersnavigatecomplexsituationsandhelpoperatorsprovidemoretailoredinformationtocustomersorstakeholders
withspecificneeds.
BarrierstoAdoption
Evenafterconsideringtherisk-opportunitytrade-offs,however,severalparticipantsnotedthatCIoperatorsfaceavarietyofbarriersthatcouldpreventthemfrom
adoptinganAIsystemevenwhenitmaybefullybeneficial.
SomeofthesebarrierstoadoptionarerelatedtohesitancyaroundAI-relatedrisks,
suchasdataprivacyandthepotentialbroadeningofone’scybersecurityattacksurface.SomeoperatorsareparticularlyhesitanttoadoptAIinOT(whereitmightaffect
physicalsystems)orcustomer-facingapplications.Thetrustworthiness—orlackthereof—ofAIsystemsisalsoasourceofhesitancy.
OtherbarriersareduetotheuniqueconstraintsfacedbyCIoperators.Forinstance,thefactthatsomesystemshavetobeconstantlyavailableisachallengeuniquetoCI.
Operatorsinsectorswithimportantdependencies—suchasenergy,water,and
communications—havelimitedwindowsinwhichtheycantaketheirsystemsoffline.OT-heavysectorsalsomustcontendwithadditionaltechnicalbarrierstoentry,suchasagenerallackofusefuldataorarelianceonlegacysystemsthatdonotproduce
usabledigitaloutputs.Incertaincases,itmayalsobeprohibitivelyexpensive—oreventechnicallyimpossible—toconductthoroughtestingandevaluationofAIapplicationswhencontrolofphysicalsystemsisinvolved.
Athirdcategoryofbarriersconcernscompliance,liability,andregulatoryrequirements.CIoperatorsareconcernedaboutrisksstemmingfromtheuseofuserdatainAI
modelsandtheneedtocomplywithfracturedregulatoryrequirementsacrossdifferentstatesordifferentcountries.Forexample,multinationalcorporationsinsectorssuchas
ITorcommunicationsarebeholdentothelawsofmultiplejurisdictionsandneedtoadheretoregulationssuchastheEuropeanUnion’sGeneralDataProtection
Regulation(GDPR),whichmaynotapplytomorelocalCIoperators.
Finally,asignificantbarriertoentryacrossalmostallsectorsistheneedforworkerswithAI-relevantskills.Participantsnotedthatalleviatingworkforceshortagesby
hiringnewworkersorskillingupcurrentemployeesisaprerequisiteforadoptingAIinanyrealcapacity.
CenterforSecurityandEmergingTechnology|14
Observations
Throughouttheworkshop,fourcommontrendsemergedfromthebroaderdiscussion.
Differentparticipants,eachrepresentingdifferentsectorsorgovernmentagencies,
raisedthematmultiplepointsduringtheconversation,anindicatoroftheirsaliency.
ThesetopicsincludethedisparitiesbetweenlargeandsmallCIproviders,thedifficultyindefininglinesbetweenAI-andcyber-relatedissues,thelackofclearowners
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 承建豬舍大棚合同范例
- 增量采購合同范例
- 沙石購置股合同范例
- 拍攝基地租賃合同范例
- 網(wǎng)店工廠合作合同范例
- 供車貨款合同范例
- 個(gè)人授權(quán)合同范例
- 代建融資服務(wù)合同范例
- 2025服裝加盟銷售合同范本
- 置換房子合同范例
- 籍貫對(duì)照表完整版
- 10、特種作業(yè)人員管理臺(tái)賬
- 機(jī)械基礎(chǔ)考試題庫及參考答案
- 高中詞匯3500亂序版
- NY 5051-2001無公害食品淡水養(yǎng)殖用水水質(zhì)
- GB/T 24176-2009金屬材料疲勞試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)方案與分析方法
- 2023年初一學(xué)生綜合素質(zhì)自我陳述報(bào)告3篇(范文)
- 四年級(jí)數(shù)學(xué)期末考試質(zhì)量分析
- 多發(fā)性骨髓瘤的療效評(píng)估
- 題型二次函數(shù)壓軸題課件
評(píng)論
0/150
提交評(píng)論