版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇省常州市武進(jìn)區(qū)禮嘉中學(xué)高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問(wèn)題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問(wèn)題的近似解,故又稱(chēng)統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.2.對(duì)于定義在上的函數(shù),若下列說(shuō)法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對(duì)于,都有3.已知,且,則()A. B. C. D.4.函數(shù)的圖象可能為()A. B.C. D.5.已知函數(shù)若關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.6.設(shè),,是非零向量.若,則()A. B. C. D.7.已知雙曲線,過(guò)原點(diǎn)作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點(diǎn),以線段PQ為直徑的圓過(guò)右焦點(diǎn)F,則雙曲線離心率為A. B. C.2 D.8.“角谷猜想”的內(nèi)容是:對(duì)于任意一個(gè)大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.99.的展開(kāi)式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-210.已知正項(xiàng)數(shù)列滿(mǎn)足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.11.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.512.復(fù)數(shù)滿(mǎn)足為虛數(shù)單位),則的虛部為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為_(kāi)_____________.14.函數(shù)的極大值為_(kāi)_____.15.若函數(shù),則的值為_(kāi)_____.16.一個(gè)空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示,則這個(gè)幾何體的體積是___________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.18.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.19.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實(shí)數(shù)的取值范圍;(2)若,證明:.21.(12分)已知,均為正數(shù),且.證明:(1);(2).22.(10分)如圖,橢圓的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,且,為等邊三角形,過(guò)點(diǎn)的直線與橢圓在軸右側(cè)的部分交于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點(diǎn)睛】本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.2、B【解析】
根據(jù)函數(shù)對(duì)稱(chēng)性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對(duì)稱(chēng),若關(guān)于對(duì)稱(chēng),則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿(mǎn)足條件.故錯(cuò)誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱(chēng)性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.3、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過(guò)程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.4、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.5、B【解析】
令,則,由圖象分析可知在上有兩個(gè)不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個(gè)不同交點(diǎn),要使關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則有兩個(gè)不同的根,設(shè)由根的分布可知,,解得.故選:B.【點(diǎn)睛】本題考查復(fù)合方程根的個(gè)數(shù)問(wèn)題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.6、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類(lèi)既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類(lèi)問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.7、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)列方程,化簡(jiǎn)后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡(jiǎn)得,故,設(shè)焦點(diǎn)坐標(biāo)為,由于以為直徑的圓經(jīng)過(guò)點(diǎn),故,即,即,即,兩邊除以得,解得.故,故選B.【點(diǎn)睛】本小題主要考查直線和雙曲線的交點(diǎn),考查圓的直徑有關(guān)的幾何性質(zhì),考查運(yùn)算求解能力,屬于中檔題.8、B【解析】
模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時(shí):,不滿(mǎn)足條件;,不滿(mǎn)足條件;,不滿(mǎn)足條件;,不滿(mǎn)足條件;,不滿(mǎn)足條件;,滿(mǎn)足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時(shí)可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.9、C【解析】
利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開(kāi)式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.10、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問(wèn)題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.11、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點(diǎn)睛】本題考查了線性回歸方程過(guò)樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.12、C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、90°【解析】
易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長(zhǎng);將四棱錐補(bǔ)形為長(zhǎng)方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線時(shí),PA達(dá)到最長(zhǎng),此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長(zhǎng)方體,其體對(duì)角線為,底面邊長(zhǎng)為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點(diǎn)睛】本題四棱錐外接球有關(guān)的問(wèn)題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.14、【解析】
先求函的定義域,再對(duì)函數(shù)進(jìn)行求導(dǎo),再解不等式得單調(diào)區(qū)間,進(jìn)而求得極值點(diǎn),即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),函數(shù)取到極大值,極大值為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意定義域優(yōu)先法則的應(yīng)用.15、【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進(jìn)而計(jì)算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)、對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.16、【解析】
先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個(gè)棱柱,如圖,底面為邊長(zhǎng)為的直角三角形,高為的棱柱,所以體積為【點(diǎn)睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項(xiàng),再解不等式.(2)根據(jù)(1),用裂項(xiàng)相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿(mǎn)足題意的最大自然數(shù)為.(2),∴...從而當(dāng)時(shí),單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞增,且,所以,由,知不等式成立.【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)建立如圖所示的空間直角坐標(biāo)系,設(shè)AC∩BD=N,連結(jié)NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(xiàn)(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.19、(1)見(jiàn)解析(2)【解析】
(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)椋?,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.20、(1)(2)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時(shí)可證結(jié)論.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞減,所以,即在上恒成立因?yàn)樵谏鲜菃握{(diào)遞減的,所以,所以(2)因?yàn)?,所以由?)知,當(dāng)時(shí),在上單調(diào)遞減所以即所以.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.解題關(guān)鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來(lái),利用函數(shù)的特例得出不等式的證明.21、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)由進(jìn)行變換,得到,兩邊開(kāi)方并化簡(jiǎn),證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴.(2).當(dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.22、(1);(2).【解析】
(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)①當(dāng)直線斜率不存在時(shí),易求坐標(biāo),從而得到所求面積;②當(dāng)直線的斜率存在時(shí),設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教五四新版必修1生物上冊(cè)月考試卷
- 2025年華師大版七年級(jí)科學(xué)上冊(cè)月考試卷含答案
- 二零二五年度高端搬家貨運(yùn)合同范本2篇
- 二零二五年度企業(yè)財(cái)務(wù)評(píng)估合同2篇
- 臨時(shí)用車(chē)駕駛員配合協(xié)議(2024年版)
- 2025年人教版二年級(jí)語(yǔ)文上冊(cè)月考試卷含答案
- 2025年蘇科版二年級(jí)語(yǔ)文上冊(cè)階段測(cè)試試卷含答案
- 2025年新科版選擇性必修3物理上冊(cè)月考試卷
- 2025年北師大新版選擇性必修1化學(xué)上冊(cè)月考試卷含答案
- 2025年外研版三年級(jí)起點(diǎn)四年級(jí)英語(yǔ)上冊(cè)階段測(cè)試試卷含答案
- 網(wǎng)絡(luò)安全日志關(guān)聯(lián)分析-洞察分析
- 醫(yī)療美容服務(wù)風(fēng)險(xiǎn)免責(zé)協(xié)議書(shū)
- 2025年度宏泰集團(tuán)應(yīng)屆高校畢業(yè)生夏季招聘【6080人】高頻重點(diǎn)提升(共500題)附帶答案詳解
- 課題申報(bào)書(shū):大中小學(xué)鑄牢中華民族共同體意識(shí)教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國(guó)典當(dāng)行業(yè)發(fā)展前景預(yù)測(cè)及融資策略分析報(bào)告
- 《乘用車(chē)越野性能主觀評(píng)價(jià)方法》
- 幼師個(gè)人成長(zhǎng)發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語(yǔ)試題及解答參考
- 批發(fā)面包采購(gòu)合同范本
評(píng)論
0/150
提交評(píng)論