版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆西藏拉薩市那曲二中高三最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則()A. B.2 C.3 D.2.已知橢圓的中心為原點(diǎn),為的左焦點(diǎn),為上一點(diǎn),滿足且,則橢圓的方程為()A. B. C. D.3.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或54.已知復(fù)數(shù),,則()A. B. C. D.5.網(wǎng)格紙上小正方形邊長(zhǎng)為1單位長(zhǎng)度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.46.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.47.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交8.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.9.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.10.盒子中有編號(hào)為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號(hào)不同的球,則取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率是()A. B. C. D.11.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種12.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數(shù)項(xiàng)為__________.14.的展開式中的系數(shù)為__________.15.函數(shù)在上的最小值和最大值分別是_____________.16.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表:并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會(huì)交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63518.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),,且,證明.20.(12分)已知為坐標(biāo)原點(diǎn),點(diǎn),,,動(dòng)點(diǎn)滿足,點(diǎn)為線段的中點(diǎn),拋物線:上點(diǎn)的縱坐標(biāo)為,.(1)求動(dòng)點(diǎn)的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線的準(zhǔn)線上一點(diǎn)滿足,試判斷是否為定值,若是,求這個(gè)定值;若不是,請(qǐng)說明理由.21.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項(xiàng)和為,滿足,且成等差數(shù)列.(1)求的通項(xiàng)公式;(2)若數(shù)列滿足,求的值.22.(10分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由奇函數(shù)定義求出和.【詳解】因?yàn)槭嵌x在上的奇函數(shù),.又當(dāng)時(shí),,.故選:A.【點(diǎn)睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.2、B【解析】由題意可得c=,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點(diǎn)睛:橢圓的定義:到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡,當(dāng)和大于兩定點(diǎn)間的距離時(shí),軌跡是橢圓,當(dāng)和等于兩定點(diǎn)間的距離時(shí),軌跡是線段(兩定點(diǎn)間的連線段),當(dāng)和小于兩定點(diǎn)間的距離時(shí),軌跡不存在.3、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.4、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.5、A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長(zhǎng)度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對(duì)本題可以利用長(zhǎng)方體,根據(jù)三視圖刪掉沒有的點(diǎn)與線,屬中檔題.6、D【解析】可以是共4個(gè),選D.7、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.8、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.9、A【解析】
根據(jù)圖象關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱圖象關(guān)于對(duì)稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對(duì)稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.10、B【解析】
由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、B【解析】
分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)答排列組合的計(jì)算,屬于基礎(chǔ)題.12、B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫妫?,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)?,所以,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、31【解析】
由二項(xiàng)式定理及其展開式得通項(xiàng)公式得:因?yàn)榈恼归_式得通項(xiàng)為,則的展開式中的常數(shù)項(xiàng)為:,得解.【詳解】解:,則的展開式中的常數(shù)項(xiàng)為:.故答案為:31.【點(diǎn)睛】本題考查二項(xiàng)式定理及其展開式的通項(xiàng)公式,求某項(xiàng)的導(dǎo)數(shù),考查計(jì)算能力.14、3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€(gè)因式取1時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€(gè)因式取時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對(duì)應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對(duì)應(yīng)系數(shù)的求解,屬于基礎(chǔ)題15、【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題16、【解析】
先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】
(1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達(dá)標(biāo)人數(shù),從而得男生中達(dá)標(biāo)人數(shù),這樣不達(dá)標(biāo)人數(shù)隨之而得,然后計(jì)算可得結(jié)論;(2)由達(dá)標(biāo)人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計(jì)算概率得分布列,再由期望公式可計(jì)算出期望.【詳解】(1)列出列聯(lián)表,,所以在犯錯(cuò)誤的概率不超過的前提下能判斷“課外體育達(dá)標(biāo)”與性別有關(guān).(2)(i)在“鍛煉達(dá)標(biāo)”的學(xué)生中,男女生人數(shù)比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,人中女生的人數(shù)為,則的可能值為,,,則,,,可得的分布列為:可得數(shù)學(xué)期望.【點(diǎn)睛】本題考查列聯(lián)表與獨(dú)立性檢驗(yàn),考查分層抽樣,隨機(jī)變量的概率分布列和期望.主要考查學(xué)生的數(shù)據(jù)處理能力,運(yùn)算求解能力,屬于中檔題.18、(1);(2)或.【解析】
(1)求出,由,建立方程求解,即可求出結(jié)論;(2)根據(jù)函數(shù)的單調(diào)區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當(dāng)時(shí),故方程有根,根為或,+0-0+極大值極小值由表可見,當(dāng)時(shí),有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因?yàn)椋?由數(shù)形結(jié)合可得或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,應(yīng)用函數(shù)的圖象是解題的關(guān)鍵,意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.19、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問題來處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對(duì)求導(dǎo)可得從而,是的兩個(gè)變號(hào)零點(diǎn),因此下證:,即證令,即證:,對(duì)求導(dǎo)可得,,,因?yàn)楣?,所以在上單調(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學(xué)生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.20、(1)曲線的標(biāo)準(zhǔn)方程為.拋物線的標(biāo)準(zhǔn)方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動(dòng)點(diǎn)P的軌跡W是橢圓,寫出橢圓的標(biāo)準(zhǔn)方程,根據(jù)平面向量數(shù)量積運(yùn)算和點(diǎn)A在拋物線上求出拋物線C的標(biāo)準(zhǔn)方程;(2)設(shè)出點(diǎn)P的坐標(biāo),再表示出點(diǎn)N和Q的坐標(biāo),根據(jù)題意求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年精簡(jiǎn)居間服務(wù)合同集3篇
- 2025年度民間借貸合同范本:醫(yī)療健康產(chǎn)業(yè)貸款合同范例2篇
- 網(wǎng)絡(luò)安全威脅情報(bào)分析-第1篇-洞察分析
- 消費(fèi)者偏好變化分析-第1篇-洞察分析
- 2023年-2024年新員工入職安全教育培訓(xùn)試題(匯編)
- 微納結(jié)構(gòu)激光制造-洞察分析
- 2023年-2024年生產(chǎn)經(jīng)營(yíng)單位安全教育培訓(xùn)試題附答案【培優(yōu)B卷】
- 抑制技術(shù)優(yōu)化創(chuàng)新-洞察分析
- 蓄能系統(tǒng)經(jīng)濟(jì)性分析-洞察分析
- 中醫(yī)論文范文
- DB11-T212-2017園林綠化工程施工及驗(yàn)收規(guī)范
- 小學(xué)數(shù)學(xué)自制教具學(xué)具的研究及探討
- 廣東省幼兒園一日活動(dòng)指引(試行)
- 光學(xué)材料-光學(xué)加工流程
- 奔馳卡車產(chǎn)品分析(課堂PPT)
- 企業(yè)各部門安全生產(chǎn)職責(zé)培訓(xùn)PPT課件
- 反循環(huán)鉆孔灌注樁施工方案
- 新能源小客車購車充電條件確認(rèn)書
- 發(fā)明專利專利答辯模板
- 市政府副市長(zhǎng)年道路春運(yùn)工作會(huì)議講話稿
- 鑄鐵鑲銅閘門
評(píng)論
0/150
提交評(píng)論