版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省閩侯第四中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.842.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.已知集合,集合,則()A. B. C. D.4.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.5.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對(duì)稱軸C.點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心D.將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象6.如圖,將兩個(gè)全等等腰直角三角形拼成一個(gè)平行四邊形,將平行四邊形沿對(duì)角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.7.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.88.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.9.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.10.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.11.已知雙曲線的實(shí)軸長(zhǎng)為,離心率為,、分別為雙曲線的左、右焦點(diǎn),點(diǎn)在雙曲線上運(yùn)動(dòng),若為銳角三角形,則的取值范圍是()A. B. C. D.12.一個(gè)正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為奇函數(shù),則______.14.在數(shù)列中,,則數(shù)列的通項(xiàng)公式_____.15.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.16.已知兩動(dòng)點(diǎn)在橢圓上,動(dòng)點(diǎn)在直線上,若恒為銳角,則橢圓的離心率的取值范圍為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)若,時(shí),在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時(shí),.18.(12分)記數(shù)列的前項(xiàng)和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,求.19.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.20.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.21.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求角的值;(2)若,,求的面積.22.(10分)已知函數(shù).(1)解不等式:;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.2、C【解析】
依題意可得,且是的一條對(duì)稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計(jì)算可得;【詳解】解:由已知得,是的一條對(duì)稱軸,且使取得最值,則,,,,故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.3、D【解析】
可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.【點(diǎn)睛】考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.4、C【解析】程序在運(yùn)行過(guò)程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.5、D【解析】
利用輔助角公式化簡(jiǎn)函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對(duì)稱軸,錯(cuò)誤C選項(xiàng),,不是對(duì)稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對(duì)稱軸,對(duì)稱中心,平移,意在考查學(xué)生對(duì)于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡(jiǎn)三角函數(shù)是解題的關(guān)鍵.6、C【解析】
利用建系,假設(shè)長(zhǎng)度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標(biāo)系如圖設(shè),所以則所以所以故選:C【點(diǎn)睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個(gè)平面,然后利用解三角形知識(shí)求解;(2)建系,利用空間向量,屬基礎(chǔ)題.7、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.8、C【解析】
由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,據(jù)此可計(jì)算出答案.【詳解】由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識(shí),幾何體的表面積的計(jì)算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.9、D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.10、D【解析】
設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.11、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點(diǎn)在雙曲線右支上運(yùn)動(dòng),則,當(dāng)時(shí),此時(shí),所以,,所以;當(dāng)軸時(shí),,所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.12、B【解析】
根據(jù)正三棱柱的主視圖,以及長(zhǎng)度,可知該幾何體的底面正三角形的邊長(zhǎng),然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長(zhǎng)為2所以該正三棱柱的三個(gè)側(cè)面均為邊長(zhǎng)為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點(diǎn)睛】本題考查正三棱柱側(cè)面積的計(jì)算以及三視圖的認(rèn)識(shí),關(guān)鍵在于求得底面正三角形的邊長(zhǎng),掌握一些常見(jiàn)的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用奇函數(shù)的定義得出,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)可求得實(shí)數(shù)的值.【詳解】由于函數(shù)為奇函數(shù),則,即,,整理得,解得.當(dāng)時(shí),真數(shù),不合乎題意;當(dāng)時(shí),,解不等式,解得或,此時(shí)函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對(duì)稱,合乎題意.綜上所述,.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性求參數(shù),考查了函數(shù)奇偶性的定義和對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.14、【解析】
由題意可得,又,數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,對(duì)分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項(xiàng)公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),則為奇數(shù),∴,∴數(shù)列的通項(xiàng)公式,故答案為:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,求出通項(xiàng)公式后再由已知求出偶數(shù)項(xiàng),要注意結(jié)果是分段函數(shù)形式.15、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.16、【解析】
根據(jù)題意可知圓上任意一點(diǎn)向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點(diǎn)向橢圓所引的兩條切線互相垂直,因此當(dāng)直線與圓相離時(shí),恒為銳角,故,解得從而離心率.故答案為:【點(diǎn)睛】本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析【解析】
(1)在上單調(diào)遞減等價(jià)于在恒成立,分離參數(shù)即可解決.(2)先對(duì)求導(dǎo),化簡(jiǎn)后根據(jù)零點(diǎn)存在性定理判斷唯一零點(diǎn)所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時(shí),,,∵在上單調(diào)遞減.∴,.令,,時(shí),;時(shí),,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時(shí),,,令,顯然在上為增函數(shù).又,,∴有唯一零點(diǎn).且,時(shí),,;時(shí),,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時(shí),.【點(diǎn)睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點(diǎn)存在性定理等知識(shí)點(diǎn),難點(diǎn)為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.18、(1)證明見(jiàn)解析,;(2)【解析】
(1)由成等差數(shù)列,可得到,再結(jié)合公式,消去,得到,再給等式兩邊同時(shí)加1,整理可證明結(jié)果;(2)將(1)得到的代入中化簡(jiǎn)后再裂項(xiàng),然后求其前項(xiàng)和.【詳解】(1)由成等差數(shù)列,則,即,①當(dāng)時(shí),,又,②由①②可得:,即,時(shí),.所以是以3為首項(xiàng),3為公比的等比數(shù)列,,所以.(2),所以.【點(diǎn)睛】此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,屬于中檔題.19、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)?,所以平?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過(guò)作的垂線段,在所有的垂線段中長(zhǎng)度最大的為,此時(shí)必過(guò)的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.20、(1)(2)【解析】
(1)利用零點(diǎn)分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時(shí),,即,無(wú)解;當(dāng)時(shí),,即,得;當(dāng)時(shí),,即,得.故所求不等式的解集為.(2)因?yàn)椋?,則,.當(dāng)且僅當(dāng)即時(shí)取等號(hào).故的最小值為.【點(diǎn)睛】本小題主要考查零點(diǎn)分段法解絕對(duì)值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1);(2)【解析】
(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣工程及其自動(dòng)化專業(yè)介紹
- 2024連鎖餐飲企業(yè)與食材供應(yīng)商的供貨合同
- 數(shù)控機(jī)床電氣控制第2版習(xí)題答案習(xí)題答案
- 2024物流與智慧城市建設(shè)合作框架協(xié)議3篇
- 2024版精裝修房屋合同模板:權(quán)益保障與細(xì)節(jié)解析
- 2025年度數(shù)據(jù)中心設(shè)備采購(gòu)及運(yùn)維服務(wù)合同3篇
- 沈陽(yáng)城市學(xué)院《飛機(jī)載重與平衡》2023-2024學(xué)年第一學(xué)期期末試卷
- 陽(yáng)泉師范高等專科學(xué)?!遁啓C(jī)化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024庭院房屋產(chǎn)權(quán)轉(zhuǎn)讓合同書樣本3篇
- 內(nèi)蒙古美術(shù)職業(yè)學(xué)院《區(qū)域經(jīng)濟(jì)學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙教版八年級(jí)上數(shù)學(xué)易錯(cuò)題
- 【基于雙因素理論的滴滴出行員工績(jī)效考核機(jī)制探析18000字(論文)】
- 2024水質(zhì)自動(dòng)監(jiān)測(cè)系統(tǒng)智慧站房建設(shè)技術(shù)指南
- 會(huì)計(jì)事務(wù)所合伙人撤資協(xié)議書
- GB/T 43674-2024加氫站通用要求
- 建筑施工進(jìn)度管理-項(xiàng)目進(jìn)度管理概述(施工組織)
- 初中九年級(jí)美術(shù)期末藝術(shù)測(cè)評(píng)指標(biāo)試卷及答案
- 新生入職紀(jì)委培訓(xùn)課件
- 違停抓拍方案
- 《生殖系統(tǒng)》課程教學(xué)大綱
- 檢驗(yàn)科質(zhì)控總結(jié)匯報(bào)
評(píng)論
0/150
提交評(píng)論