新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題11 函數(shù)與導(dǎo)數(shù)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題11 函數(shù)與導(dǎo)數(shù)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題11 函數(shù)與導(dǎo)數(shù)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題11 函數(shù)與導(dǎo)數(shù)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 小題綜合練專題11 函數(shù)與導(dǎo)數(shù)(解析版)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題11函數(shù)與導(dǎo)數(shù)小題綜合一、單選題1.(2023·浙江·校聯(lián)考三模)已知SKIPIF1<0,且滿足SKIPIF1<0,則下列判斷正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】通過取特殊值,可判斷ABC錯(cuò)誤,根據(jù)導(dǎo)數(shù)可判斷D正確.【詳解】因?yàn)镾KIPIF1<0,且滿足SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0,所以有SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故可排除BC,再取SKIPIF1<0,則SKIPIF1<0,顯然有SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)A也可排除.對(duì)于D,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為增函數(shù),故SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,同理可證:SKIPIF1<0時(shí),SKIPIF1<0也成立,故SKIPIF1<0,故D成立.故選:D.2.(2023·浙江溫州·樂清市知臨中學(xué)??寄M預(yù)測(cè))在函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,既是奇函數(shù)又是周期函數(shù)的有(

)個(gè)A.0 B.1 C.2 D.3【答案】C【分析】設(shè)SKIPIF1<0,SKIPIF1<0,首先判斷出SKIPIF1<0的奇偶性與周期性,再分別判斷SKIPIF1<0的奇偶性與周期性即可.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0是SKIPIF1<0上的奇函數(shù),顯然SKIPIF1<0不是周期函數(shù);對(duì)于SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為奇函數(shù),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是周期函數(shù);對(duì)于SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為偶函數(shù),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是周期函數(shù);對(duì)于SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在定義域內(nèi)為奇函數(shù),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是周期函數(shù);綜上所述,SKIPIF1<0,SKIPIF1<0既是奇函數(shù)又是周期函數(shù),故選:C.3.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0同時(shí)滿足性質(zhì):①SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0可能為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】①SKIPIF1<0說明SKIPIF1<0為偶函數(shù),②SKIPIF1<0,說明函數(shù)在SKIPIF1<0上單調(diào)遞減,再逐項(xiàng)分析即可.【詳解】①SKIPIF1<0說明SKIPIF1<0為偶函數(shù),②SKIPIF1<0,說明函數(shù)在SKIPIF1<0上單調(diào)遞減.A不滿足②,B不滿足①,C不滿足②,因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.對(duì)于D,滿足①,當(dāng)SKIPIF1<0,單調(diào)遞減,也滿足②.故選:D.4.(2023·浙江·校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0為偶函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為偶函數(shù)【答案】B【分析】方法一:可得SKIPIF1<0,即可得到函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,從而得到SKIPIF1<0為偶函數(shù);方法二:求出SKIPIF1<0的解析式,即可判斷.【詳解】方法一:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,將SKIPIF1<0的函數(shù)圖象向左平移SKIPIF1<0個(gè)單位,關(guān)于SKIPIF1<0軸對(duì)稱,即SKIPIF1<0為偶函數(shù).方法二:因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為偶函數(shù);又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0為非奇非偶函數(shù);又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0為非奇非偶函數(shù);又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0為非奇非偶函數(shù).故選:B5.(2023·浙江紹興·統(tǒng)考模擬預(yù)測(cè))如圖是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0,則SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】D【分析】根據(jù)導(dǎo)函數(shù)的圖象在區(qū)間SKIPIF1<0內(nèi)的函數(shù)的范圍,判斷出函數(shù)SKIPIF1<0區(qū)間SKIPIF1<0上各點(diǎn)處切線的斜率的范圍,根據(jù)導(dǎo)函數(shù)的圖象得導(dǎo)函數(shù)函數(shù)值的符號(hào),得函數(shù)SKIPIF1<0的單調(diào)性,再結(jié)合四個(gè)選項(xiàng)可得答案.【詳解】由SKIPIF1<0的圖象可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上各點(diǎn)處切線的斜率在區(qū)間SKIPIF1<0內(nèi),對(duì)于A,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上各點(diǎn)處切線的斜率均小于0,故A不正確;對(duì)于B,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上存在點(diǎn),在該點(diǎn)處切線的斜率大于1,故B不正確;對(duì)于C,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上存在點(diǎn),在該點(diǎn)處切線的斜率大于1,故C不正確;對(duì)于D,由SKIPIF1<0的圖象可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0上各點(diǎn)處切線的斜率在區(qū)間SKIPIF1<0內(nèi),在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,而函數(shù)SKIPIF1<0的圖象均符合這些性質(zhì),故D正確.故選:D6.(2023·浙江·校聯(lián)考模擬預(yù)測(cè))函數(shù)SKIPIF1<0,其中SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用導(dǎo)數(shù)分析可知函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),令SKIPIF1<0,可知SKIPIF1<0在SKIPIF1<0上為減函數(shù),由SKIPIF1<0可得出SKIPIF1<0,即可得出原不等式的解集.【詳解】因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),此時(shí),SKIPIF1<0.因?yàn)镾KIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,綜上可知,函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),令SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又因?yàn)镾KIPIF1<0,所以,SKIPIF1<0等價(jià)于SKIPIF1<0,結(jié)合函數(shù)SKIPIF1<0的單調(diào)性可得SKIPIF1<0,故原不等式的解集為SKIPIF1<0.故選:A.7.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)??茧A段練習(xí))對(duì)正實(shí)數(shù)a有SKIPIF1<0在定義域內(nèi)恒成立,則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用導(dǎo)數(shù)研究SKIPIF1<0單調(diào)性,得極小值SKIPIF1<0,將問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,再應(yīng)用導(dǎo)數(shù)研究左側(cè)的最小值,即可求解.【詳解】由題設(shè)SKIPIF1<0且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,顯然SKIPIF1<0趨向0時(shí)SKIPIF1<0趨向SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0使SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞減;在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞增;故SKIPIF1<0,要SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0,即SKIPIF1<0恒成立,令SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0上SKIPIF1<0遞減,SKIPIF1<0上SKIPIF1<0遞增,則SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上,SKIPIF1<0,可得SKIPIF1<0.故選:C8.(2023·浙江溫州·樂清市知臨中學(xué)??寄M預(yù)測(cè))設(shè)SKIPIF1<0,SKIPIF1<0,已知函數(shù)SKIPIF1<0,SKIPIF1<0有且只有一個(gè)零點(diǎn),則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,可得SKIPIF1<0,由此可得點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,由此可得SKIPIF1<0,再利用導(dǎo)數(shù)求其最小值.【詳解】函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,所以點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,又SKIPIF1<0表示點(diǎn)SKIPIF1<0到原點(diǎn)的距離的平方,故SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.所以當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0取最小值,最小值為SKIPIF1<0.所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.故選:B.【點(diǎn)睛】知識(shí)點(diǎn)點(diǎn)睛:本題考查函數(shù)零點(diǎn)的定義,直線方程的定義,點(diǎn)到直線的距離,兩點(diǎn)之間的距離,利用導(dǎo)數(shù)求函數(shù)的最值,考查數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合等數(shù)學(xué)思想.9.(2023·浙江嘉興·校考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題設(shè)知SKIPIF1<0,研究SKIPIF1<0的單調(diào)性及最值,畫出函數(shù)圖象,數(shù)形結(jié)合確定SKIPIF1<0、SKIPIF1<0的交點(diǎn)個(gè)數(shù)得SKIPIF1<0,進(jìn)而將目標(biāo)式化為SKIPIF1<0且SKIPIF1<0,構(gòu)造函數(shù)研究最小值即可.【詳解】由題設(shè)SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞減;SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞增;SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0圖象如下:

由圖知:SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞減;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增;所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用同構(gòu)得到SKIPIF1<0,導(dǎo)數(shù)研究SKIPIF1<0的性質(zhì),結(jié)合SKIPIF1<0得到SKIPIF1<0為關(guān)鍵.10.(2023·浙江·高三專題練習(xí))已知SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0的最小值是(

)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先將條件轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,再構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0兩種情況討論,再結(jié)合導(dǎo)函數(shù)分析函數(shù)的單調(diào)性,進(jìn)而即可求解.【詳解】SKIPIF1<0在SKIPIF1<0上恒成立,等價(jià)于SKIPIF1<0在SKIPIF1<0上恒成立,等價(jià)于SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則若SKIPIF1<0時(shí),SKIPIF1<0,不符合題意;當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,若SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增;若SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值是SKIPIF1<0.故選:D.11.(2023·浙江紹興·統(tǒng)考二模)已知正數(shù)SKIPIF1<0滿足SKIPIF1<0為自然對(duì)數(shù)的底數(shù),則下列不等式一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題設(shè)SKIPIF1<0且SKIPIF1<0,構(gòu)造SKIPIF1<0、SKIPIF1<0,利用導(dǎo)數(shù)、零點(diǎn)存在性定理判斷在SKIPIF1<0上的函數(shù)值符號(hào),即可得答案.【詳解】由題設(shè)SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0,A錯(cuò),B對(duì);對(duì)于SKIPIF1<0的大小關(guān)系,令SKIPIF1<0且SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上函數(shù)符號(hào)有正有負(fù),故SKIPIF1<0的大小在SKIPIF1<0上不確定,即SKIPIF1<0的大小在SKIPIF1<0上不確定,所以C、D錯(cuò).故選:B12.(2023·浙江·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,且滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】變形給定的等式,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)探討單調(diào)性,借助單調(diào)性比較大小作答.【詳解】由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令函數(shù)SKIPIF1<0,顯然SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,于是SKIPIF1<0,即有SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故選:B【點(diǎn)睛】思路點(diǎn)睛:某些數(shù)或式大小關(guān)系問題,看似與函數(shù)的單調(diào)性無關(guān),細(xì)心挖掘問題的內(nèi)在聯(lián)系,抓住其本質(zhì),構(gòu)造函數(shù),分析并運(yùn)用函數(shù)的單調(diào)性解題,它能起到化難為易、化繁為簡(jiǎn)的作用.13.(2023·浙江寧波·鎮(zhèn)海中學(xué)校考模擬預(yù)測(cè))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根據(jù)SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,再構(gòu)造函數(shù),比較出SKIPIF1<0,得到結(jié)論.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下證SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,射線SKIPIF1<0與單位圓SKIPIF1<0相交于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0⊥SKIPIF1<0軸于點(diǎn)D,單位圓與SKIPIF1<0軸正半軸交于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0⊥SKIPIF1<0軸,交射線SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,設(shè)扇形SKIPIF1<0的面積為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0因?yàn)镾KIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,D正確.故選:D【點(diǎn)睛】麥克勞林展開式常常用于放縮法進(jìn)行比較大小,常用的麥克勞林展開式如下:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<014.(2023·浙江·校聯(lián)考模擬預(yù)測(cè))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,則下列錯(cuò)誤的是(

)A.若SKIPIF1<0關(guān)于SKIPIF1<0中心對(duì)稱,則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱B.若SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0有對(duì)稱中心C.若SKIPIF1<0有1個(gè)對(duì)稱中心和1條與SKIPIF1<0軸垂直的不過對(duì)稱中心的對(duì)稱軸,則SKIPIF1<0為周期函數(shù)D.若SKIPIF1<0有兩個(gè)不同的對(duì)稱中心,則SKIPIF1<0為周期函數(shù)【答案】D【分析】根據(jù)函數(shù)性質(zhì)結(jié)合導(dǎo)數(shù)運(yùn)算逐項(xiàng)分析判斷.【詳解】對(duì)于選項(xiàng)A:若SKIPIF1<0關(guān)于SKIPIF1<0中心對(duì)稱,則SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,故A正確;對(duì)于選項(xiàng)B:若SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,故B正確;對(duì)于選項(xiàng)C:若SKIPIF1<0有1個(gè)對(duì)稱中心和1條與SKIPIF1<0軸垂直的不過對(duì)稱中心的對(duì)稱軸,設(shè)對(duì)稱中心為SKIPIF1<0,對(duì)稱軸為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的周期為SKIPIF1<0,故C正確;對(duì)于選項(xiàng)D:若SKIPIF1<0有兩個(gè)不同的對(duì)稱中心,則SKIPIF1<0不一定為周期函數(shù),例如:SKIPIF1<0,對(duì)任意SKIPIF1<0,則有:SKIPIF1<0SKIPIF1<0,故SKIPIF1<0的對(duì)稱中心為SKIPIF1<0,滿足題意,但SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故SKIPIF1<0為偶函數(shù),假設(shè)SKIPIF1<0為周期函數(shù),周期為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0.當(dāng)SKIPIF1<0為偶數(shù),則SKIPIF1<0SKIPIF1<0,可得對(duì)任意SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,顯然對(duì)任意SKIPIF1<0,均不成立;當(dāng)SKIPIF1<0為奇數(shù),則SKIPIF1<0SKIPIF1<0,可得對(duì)任意SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,顯然對(duì)任意SKIPIF1<0,均不成立;綜上所述:不存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0.所以SKIPIF1<0不是周期函數(shù),故D錯(cuò)誤;故選:D.【點(diǎn)睛】方法點(diǎn)睛:函數(shù)的性質(zhì)主要是函數(shù)的奇偶性、單調(diào)性和周期性以及函數(shù)圖象的對(duì)稱性,在解題中根據(jù)問題的條件通過變換函數(shù)的解析式或者已知的函數(shù)關(guān)系,推證函數(shù)的性質(zhì),根據(jù)函數(shù)的性質(zhì)解決問題.15.(2023·浙江·高三專題練習(xí))設(shè)SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)SKIPIF1<0進(jìn)行構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)判斷單調(diào)性,推出a與1的大小關(guān)系,同理判斷b與1的關(guān)系,判斷SKIPIF1<0的大小范圍時(shí)采用分析的方法,結(jié)合SKIPIF1<0的特點(diǎn),構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷單調(diào)性,即可判斷其范圍.【詳解】設(shè)函數(shù)SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,A錯(cuò)誤;設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,僅當(dāng)SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,D錯(cuò)誤;由SKIPIF1<0,下面證明SKIPIF1<0,SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,即證:SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,即證SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,即SKIPIF1<0成立,故SKIPIF1<0成立,所以SKIPIF1<0,故選:B【點(diǎn)睛】難點(diǎn)點(diǎn)睛:本題比較大小,要明確數(shù)的結(jié)構(gòu)特點(diǎn),確定其中的變量,進(jìn)而構(gòu)造相應(yīng)的函數(shù),利用單調(diào)性進(jìn)行大小比較,難點(diǎn)是本題解答時(shí)要選擇恰當(dāng)?shù)淖兞浚B續(xù)構(gòu)造相應(yīng)的函數(shù),進(jìn)行解答.二、多選題16.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)??茧A段練習(xí))已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,且圖像關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0(

)A.SKIPIF1<0 B.周期SKIPIF1<0C.在SKIPIF1<0單調(diào)遞減 D.滿足SKIPIF1<0【答案】AC【分析】根據(jù)題意化簡(jiǎn)得到SKIPIF1<0,得到SKIPIF1<0的周期為SKIPIF1<0,結(jié)合SKIPIF1<0,求得SKIPIF1<0,得到A正確,B錯(cuò)誤;再由SKIPIF1<0的對(duì)稱性和單調(diào)性,得出SKIPIF1<0在SKIPIF1<0單調(diào)遞減,可判定C正確;根據(jù)SKIPIF1<0的周期求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,結(jié)合特殊函數(shù)SKIPIF1<0的值,可判定D不正確.【詳解】由SKIPIF1<0,可得SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,所以SKIPIF1<0又由SKIPIF1<0知:SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0圖像關(guān)于SKIPIF1<0對(duì)稱,即SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周期為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A正確,B錯(cuò)誤;因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又圖像關(guān)于SKIPIF1<0對(duì)稱,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)殛P(guān)于SKIPIF1<0對(duì)稱,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又因?yàn)殛P(guān)于SKIPIF1<0對(duì)稱,可得函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,故C正確;根據(jù)SKIPIF1<0的周期為SKIPIF1<0,可得SKIPIF1<0,因?yàn)殛P(guān)于SKIPIF1<0對(duì)稱,所以SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且關(guān)于SKIPIF1<0對(duì)稱,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,確定的單調(diào)區(qū)間內(nèi)均不包含SKIPIF1<0,若SKIPIF1<0,所以SKIPIF1<0不正確.故選:AC.【點(diǎn)睛】規(guī)律探求:對(duì)于函數(shù)的基本性質(zhì)綜合應(yīng)用問題解答時(shí),涉及到函數(shù)的周期性有時(shí)需要通過函數(shù)的對(duì)稱性得到,函數(shù)的對(duì)稱性體現(xiàn)的是一種對(duì)稱關(guān)系,而函數(shù)的單調(diào)性體現(xiàn)的時(shí)函數(shù)值隨自變量變化而變化的規(guī)律,因此在解題時(shí),往往西藥借助函數(shù)的對(duì)稱性、奇偶性和周期性來確定另一區(qū)間上的單調(diào)性,即實(shí)現(xiàn)區(qū)間的轉(zhuǎn)換,再利用單調(diào)性解決相關(guān)問題.17.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0)是奇函數(shù),SKIPIF1<0且SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0的一個(gè)周期是4 C.SKIPIF1<0是偶函數(shù) D.SKIPIF1<0【答案】BC【分析】根據(jù)函數(shù)奇偶性與SKIPIF1<0可得SKIPIF1<0,根據(jù)導(dǎo)數(shù)的運(yùn)算可得SKIPIF1<0從而可判斷B項(xiàng),根據(jù)周期性與奇偶性可判斷A項(xiàng),根據(jù)奇偶性與導(dǎo)數(shù)運(yùn)算可得SKIPIF1<0,從而可判斷C項(xiàng),在SKIPIF1<0中,令SKIPIF1<0代入計(jì)算可判斷D項(xiàng).【詳解】因?yàn)楹瘮?shù)SKIPIF1<0是奇函數(shù),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,故SKIPIF1<0的周期為4,所以SKIPIF1<0,故SKIPIF1<0的一個(gè)周期為4,故B項(xiàng)正確;SKIPIF1<0,故A項(xiàng)錯(cuò)誤;因?yàn)楹瘮?shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故C項(xiàng)正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,解得:SKIPIF1<0,故D項(xiàng)錯(cuò)誤.故選:BC.18.(2023·??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0,則下列結(jié)論中正確的是(

)A.導(dǎo)函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0B.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱C.過原點(diǎn)SKIPIF1<0只能作一條直線與SKIPIF1<0的圖象相切D.SKIPIF1<0恰有兩個(gè)零點(diǎn)【答案】BC【分析】先求出SKIPIF1<0,利用二次函數(shù)知識(shí)求出函數(shù)的單調(diào)區(qū)間,可判斷A,根據(jù)SKIPIF1<0得到函數(shù)的中心對(duì)稱,可判斷B,利用導(dǎo)數(shù)的幾何意義建立切點(diǎn)橫坐標(biāo)方程,根據(jù)根的個(gè)數(shù)判斷C,再由函數(shù)單調(diào)性、極值點(diǎn)結(jié)合圖象對(duì)選項(xiàng)D作出判斷即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則導(dǎo)函數(shù)SKIPIF1<0為對(duì)稱軸是SKIPIF1<0,且開口向上的拋物線,故其單調(diào)減區(qū)間為SKIPIF1<0,A錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,B正確;設(shè)過原點(diǎn)SKIPIF1<0的直線與SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0有極大值SKIPIF1<0,極小值SKIPIF1<0,由三次函數(shù)性質(zhì)得SKIPIF1<0只有一個(gè)解,則過原點(diǎn)SKIPIF1<0只能作一條直線與SKIPIF1<0的圖象相切,C正確;令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0有極大值SKIPIF1<0,極小值SKIPIF1<0,由三次函數(shù)性質(zhì)得SKIPIF1<0有三個(gè)解,即SKIPIF1<0有三個(gè)零點(diǎn),故D錯(cuò)誤.故選:BC19.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0與SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0與SKIPIF1<0的定義域均為SKIPIF1<0,SKIPIF1<0是偶函數(shù),SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【分析】先證明定理1:若函數(shù)SKIPIF1<0連續(xù)且可導(dǎo),則SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱SKIPIF1<0導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱.定理2:若函數(shù)SKIPIF1<0連續(xù)且可導(dǎo),則SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱SKIPIF1<0導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱.令SKIPIF1<0,即可判斷A,D;令SKIPIF1<0,即可判斷B,C.【詳解】定理1:若函數(shù)SKIPIF1<0連續(xù)且可導(dǎo),則SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱SKIPIF1<0導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱.定理2:若函數(shù)SKIPIF1<0連續(xù)且可導(dǎo),則SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱SKIPIF1<0導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱.以下證明定理1,定理2:證明:若函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0,則SKIPIF1<0,所以導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱.若導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0(c為常數(shù)),又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱.若函數(shù)SKIPIF1<0圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱.若導(dǎo)函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0(c為常數(shù)),又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論