2025屆湖北省宜昌市秭歸縣二中高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
2025屆湖北省宜昌市秭歸縣二中高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
2025屆湖北省宜昌市秭歸縣二中高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
2025屆湖北省宜昌市秭歸縣二中高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
2025屆湖北省宜昌市秭歸縣二中高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖北省宜昌市秭歸縣二中高考沖刺數(shù)學(xué)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年部分省市將實行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為A. B.C. D.2.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.3.兩圓和相外切,且,則的最大值為()A. B.9 C. D.14.若復(fù)數(shù)滿足,則()A. B. C.2 D.5.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.6.函數(shù)的大致圖象為A. B.C. D.7.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.8.設(shè)且,則下列不等式成立的是()A. B. C. D.9.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.10.已知函數(shù),則不等式的解集是()A. B. C. D.11.已知向量,,且,則()A. B. C.1 D.212.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為數(shù)列的前項和,若,則__________.14.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.15.若,則______.16.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.18.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于x的不等式;(2)當(dāng)時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.20.(12分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次?。ㄈ?,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數(shù)學(xué)期望;(2)趙四購物恰好滿600元,假設(shè)他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當(dāng)時,不等式恒成立,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B.2、D【解析】

由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.3、A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.4、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.5、C【解析】

將復(fù)數(shù)化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.6、A【解析】

因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.7、A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.8、A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.9、C【解析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.10、B【解析】

由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時,,單調(diào)遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.11、A【解析】

根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎(chǔ)題.12、B【解析】

由模長公式求解即可.【詳解】,當(dāng)時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關(guān)鍵,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-254【解析】

利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:【點睛】本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道中檔題.14、【解析】

首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.15、【解析】

直接利用關(guān)系式求出函數(shù)的被積函數(shù)的原函數(shù),進一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點睛】本題考查的知識要點:定積分的應(yīng)用,被積函數(shù)的原函數(shù)的求法,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.16、【解析】

由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計算能力,難度較難.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設(shè)出直線方程,聯(lián)立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時,直線的斜率為0,此時(ii)當(dāng)直線的斜率為零時,.(iii)當(dāng)直線的斜率存在且不等于零時,設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標準方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標函數(shù)解析式,運用函數(shù)知識求解;本題是難題.18、(1)(2)【解析】

(1)當(dāng)時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進而求得的取值范圍.【詳解】(1)當(dāng)時,由得由得解:,得∴當(dāng)時,關(guān)于的不等式的解集為(2)①當(dāng)時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.19、(Ⅰ).(Ⅱ).【解析】

(Ⅰ)由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.20、(1)分布見解析,期望為;(2).【解析】

(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎金恰好為60元,可能是三次二等獎,也可能是一次一等獎,兩次三等獎,然后分別求解概率即可.【詳解】(1)由題意知,隨機變量X的可能取值為10,20,40且,,所以,即隨機變量X的概率分布為X102040P所以隨機變量X的數(shù)學(xué)期望.(2)由題意知,趙四有三次抽獎機會,設(shè)恰好獲得60元為事件A,因為60=20×3=40+10+10,所以.【點睛】本題主要考查隨機變量的分布列及數(shù)學(xué)期望,明確隨機變量的所有取值是求解的第一步,再求解對應(yīng)的概率,側(cè)重考查數(shù)學(xué)建模的核心素養(yǎng).21、(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當(dāng),即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標運算,是一道容易題.22、(1)詳見解析;(2)詳見解析.【解析】

(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當(dāng)時,不等式恒成立,分離參數(shù)只需時,恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論