版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省林州一中2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則的最小值為()A. B. C. D.2.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.73.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.4.已知實(shí)數(shù)滿足,則的最小值為()A. B. C. D.5.已知實(shí)數(shù)滿足約束條件,則的最小值是A. B. C.1 D.46.一個盒子里有4個分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種7.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.8.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.9.?dāng)?shù)列滿足,且,,則()A. B.9 C. D.710.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對稱中心的充要條件是()A. B.C. D.11.已知集合,,則()A. B. C. D.12.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.14.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時橢圓的方程是____.15.已知函數(shù),若,則___________.16.在的展開式中,的系數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.18.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.19.(12分)健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會員統(tǒng)計它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計1位會員至少消費(fèi)兩次的概率(2)某會員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機(jī)抽取兩位,記從這兩位會員的消費(fèi)獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動點(diǎn),為線段的中點(diǎn),求的最大值.21.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.22.(10分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
利用三角恒等變換化簡三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.2、B【解析】考點(diǎn):程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過程中各變量的值的變化情況,不難給出答案.解:程序在運(yùn)行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時退出,故選B.3、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時,截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.4、A【解析】
所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因?yàn)闈M足,則,當(dāng)且僅當(dāng)時取等號,故選:.【點(diǎn)睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.5、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過點(diǎn)時,z取得最小值,由,解得,所以,所以,故選B.6、C【解析】
由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進(jìn)而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C【點(diǎn)睛】本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.7、B【解析】
取的中點(diǎn),連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點(diǎn),連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點(diǎn)睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.8、C【解析】根據(jù)命題的否定,可以寫出:,所以選C.9、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.10、A【解析】
由題可得出的坐標(biāo)為,再利用點(diǎn)對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】
求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】
依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點(diǎn)睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因?yàn)?,所以是異面直線與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計算能力.14、【解析】
根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對稱軸與求解的關(guān)系分析最值求解即可.【詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶ΨQ軸為.(i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.此時,解得.(ii)當(dāng)時,在上單調(diào)遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點(diǎn)睛】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.15、【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因?yàn)楹瘮?shù),其定義域?yàn)?,所以其定義域關(guān)于原點(diǎn)對稱,又,所以函數(shù)為奇函數(shù),因?yàn)?,所?故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、??碱}型.16、【解析】
根據(jù)二項(xiàng)展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項(xiàng)為:,的系數(shù)為.
故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時,;當(dāng)時,;當(dāng)時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點(diǎn)睛】本題考查利用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.18、(1)見解析;(2).【解析】
(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)?,所?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)?,所以,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點(diǎn)即為球心,記的中點(diǎn)為點(diǎn),則.由與相似可得,所以.所以三棱錐外接球的體積為.【點(diǎn)睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.19、(1)(2)22.5(3)見解析,【解析】
(1)根據(jù)頻數(shù)計算頻率,得出概率;(2)根據(jù)優(yōu)惠標(biāo)準(zhǔn)計算平均利潤;(3)求出各種情況對應(yīng)的的值和概率,得出分布列,從而計算出數(shù)學(xué)期望.【詳解】解:(1)估計1位會員至少消費(fèi)兩次的概率;(2)第1次消費(fèi)利潤;第2次消費(fèi)利潤;第3次消費(fèi)利潤;第4次消費(fèi)利潤;這4次消費(fèi)獲得的平均利潤:(3)1次消費(fèi)利潤是27,概率是;2次消費(fèi)利潤是,概率是;3次消費(fèi)利潤是,概率是;4次消費(fèi)利潤是,概率是;由題意:故分布列為:0期望為:【點(diǎn)睛】本題考查概率、平均利潤、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.20、(1),;(2).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,可得點(diǎn)在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因?yàn)辄c(diǎn)在曲線上,為正三角形,所以點(diǎn)在曲線上.又因?yàn)辄c(diǎn)在曲線上,所以點(diǎn)的極坐標(biāo)是,從而,點(diǎn)的極坐標(biāo)是.(2)由(1)可知,點(diǎn)的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,有即點(diǎn)在以為圓心,為半徑的圓上.,所以的最大值為.【點(diǎn)睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、證明見解析【解析】
根據(jù)相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關(guān)系,故可根據(jù)判定定理一需找到另外一組相等角,結(jié)合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因?yàn)?,所以.在與中,,,故~.【點(diǎn)睛】本題考查平面幾何中同弧所對的圓心角與圓周角的關(guān)系、相似三角形的判定定理;考查邏輯推理能力和數(shù)形結(jié)合思想;分析圖形,找出角與角之間的關(guān)系是證明本題的關(guān)鍵;屬于基礎(chǔ)題.22、(1)見解析;(2)【解析】
(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初二數(shù)學(xué)學(xué)習(xí)法模板
- 夜間照明專項(xiàng)施工方案
- 鞋面制作課程設(shè)計
- 運(yùn)輸機(jī)器人課程設(shè)計
- 2024年醫(yī)院設(shè)備采購管理制度
- 2025年度智能建筑打樁施工技術(shù)服務(wù)合同4篇
- 2025年度租賃住宅用電安全保障合同樣本4篇
- 2025年消防應(yīng)急照明與疏散指示系統(tǒng)三方合同范文3篇
- 二零二五版離婚協(xié)議書起草與子女撫養(yǎng)權(quán)變更執(zhí)行監(jiān)督協(xié)議書4篇
- 銷售部培訓(xùn)課程設(shè)計
- 保險反洗錢培訓(xùn)
- 普通高中生物新課程標(biāo)準(zhǔn)
- 茉莉花-附指法鋼琴譜五線譜
- 結(jié)婚函調(diào)報告表
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計規(guī)范-PDF解密
- 冷庫制冷負(fù)荷計算表
- 肩袖損傷護(hù)理查房
- 設(shè)備運(yùn)維管理安全規(guī)范標(biāo)準(zhǔn)
- 辦文辦會辦事實(shí)務(wù)課件
- 大學(xué)宿舍人際關(guān)系
- 2023光明小升初(語文)試卷
評論
0/150
提交評論