![2025屆上海市五校聯(lián)考高三下第一次測(cè)試數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view14/M08/21/13/wKhkGWdfLASAGwPQAALnWbaGgpQ778.jpg)
![2025屆上海市五校聯(lián)考高三下第一次測(cè)試數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view14/M08/21/13/wKhkGWdfLASAGwPQAALnWbaGgpQ7782.jpg)
![2025屆上海市五校聯(lián)考高三下第一次測(cè)試數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view14/M08/21/13/wKhkGWdfLASAGwPQAALnWbaGgpQ7783.jpg)
![2025屆上海市五校聯(lián)考高三下第一次測(cè)試數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view14/M08/21/13/wKhkGWdfLASAGwPQAALnWbaGgpQ7784.jpg)
![2025屆上海市五校聯(lián)考高三下第一次測(cè)試數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view14/M08/21/13/wKhkGWdfLASAGwPQAALnWbaGgpQ7785.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆上海市五校聯(lián)考高三下第一次測(cè)試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.2.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為()A. B. C. D.3.若平面向量,滿足,則的最大值為()A. B. C. D.4.我們熟悉的卡通形象“哆啦A夢(mèng)”的長(zhǎng)寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米5.用一個(gè)平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形6.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.7.函數(shù)(或)的圖象大致是()A. B. C. D.8.若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.569.已知雙曲線的左、右焦點(diǎn)分別為,過作一條直線與雙曲線右支交于兩點(diǎn),坐標(biāo)原點(diǎn)為,若,則該雙曲線的離心率為()A. B. C. D.10.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b11.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面12.拋物線的焦點(diǎn)為,則經(jīng)過點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.0個(gè) D.無數(shù)個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且,則___________.14.已知函數(shù)的最小值為2,則_________.15.曲線在處的切線的斜率為________.16.設(shè),則_____,(的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值18.(12分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.19.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動(dòng)點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長(zhǎng)和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.20.(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,其前項(xiàng)和為,且為與的等差中項(xiàng).(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項(xiàng)和.21.(12分)在中,角的對(duì)邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長(zhǎng).22.(10分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.2、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.3、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.4、B【解析】
根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國(guó)文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.5、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.6、D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對(duì)函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.7、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.8、A【解析】
先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.9、B【解析】
由題可知,,再結(jié)合雙曲線第一定義,可得,對(duì)有,即,解得,再對(duì),由勾股定理可得,化簡(jiǎn)即可求解【詳解】如圖,因?yàn)?,所?因?yàn)樗?在中,,即,得,則.在中,由得.故選:B【點(diǎn)睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題10、B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.11、B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.12、B【解析】
圓心在的中垂線上,經(jīng)過點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個(gè)點(diǎn),得到2個(gè)圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個(gè),故過點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡(jiǎn)單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因?yàn)?,所以,解?故答案為:【點(diǎn)睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.14、【解析】
首先利用絕對(duì)值的意義去掉絕對(duì)值符號(hào),之后再結(jié)合后邊的函數(shù)解析式,對(duì)照函數(shù)值等于2的時(shí)候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點(diǎn),從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當(dāng)或時(shí)是分界點(diǎn),結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點(diǎn),故,解得,故答案是.【點(diǎn)睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.15、【解析】
求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.16、7201【解析】
利用二項(xiàng)展開式的通式可求出;令中的,得兩個(gè)式子,代入可得結(jié)果.【詳解】利用二項(xiàng)式系數(shù)公式,,故,,故(=,故答案為:720;1.【點(diǎn)睛】本題考查二項(xiàng)展開式的通項(xiàng)公式的應(yīng)用,考查賦值法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問題,意在考查空間想象能力,推理證明和計(jì)算能力,屬于中檔題型,證明線面平行,或證明面面平行時(shí),關(guān)鍵是證明線線平行,所以做輔助線或證明時(shí),需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.18、【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因?yàn)橄嗲?所以圓心到直線的距離等于半徑,即解得.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程的互化,考查直線與圓的位置關(guān)系,是基礎(chǔ)題.19、(1)(2)或【解析】
(1)根據(jù)題意計(jì)算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計(jì)算得到答案.【詳解】(1)由平行四邊形的周長(zhǎng)為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點(diǎn).設(shè),由消得,所以,因?yàn)?,所?因?yàn)辄c(diǎn)在以線段為直徑的圓上,所以,即,所以直線的方程或.【點(diǎn)睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.20、(1)證明見解析;(2).【解析】
(1)利用已知條件化簡(jiǎn)出,當(dāng)時(shí),,當(dāng)時(shí),再利用進(jìn)行化簡(jiǎn),得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項(xiàng)公式,再化簡(jiǎn)出,可直接求出的前100項(xiàng)和.【詳解】解:(1)由題意知,即,①當(dāng)時(shí),由①式可得;又時(shí),有,代入①式得,整理得,∴是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項(xiàng)都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項(xiàng)和.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項(xiàng)公式的求法以及裂項(xiàng)相消法求和,考查分析解題能力和計(jì)算能力.21、(1);(2)【解析】
(1)由正弦定理可得,,化簡(jiǎn)并結(jié)合,可求得三者間的關(guān)系,代入余弦定理可求得;(2)由(1)可求得,再結(jié)合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因?yàn)?所以,整理得:.因?yàn)?所以,所以.由余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《無套利分析方法》課件
- 《起搏器的程控隨訪》課件
- 《核型與帶型分析》課件
- 《零售巨頭沃爾瑪》課件
- 《試驗(yàn)設(shè)計(jì)原理》課件
- 企業(yè)標(biāo)準(zhǔn)體系實(shí)施指南-我國(guó)企業(yè)管理的現(xiàn)狀分析
- 2025年鄭州道路運(yùn)輸從業(yè)資格證
- 心理護(hù)理干預(yù)對(duì)老年慢性心力衰竭合并糖尿病患者認(rèn)知功能障礙的影響
- 周會(huì)展望與回顧模板
- 探索抗癌新篇章
- (2024年)剪映入門教程課件
- 《寵物飼養(yǎng)》課程標(biāo)準(zhǔn)
- 快餐品牌全案推廣方案
- IT總監(jiān)年終述職報(bào)告
- 環(huán)境衛(wèi)生整治推進(jìn)行動(dòng)實(shí)施方案
- 口腔醫(yī)院感染預(yù)防與控制1
- 2024年同等學(xué)力英語真題解析
- 2023年中考英語二輪復(fù)習(xí):動(dòng)詞的時(shí)態(tài)(附答案解析)
- 緒論中國(guó)文化概論張岱年
- 發(fā)生輸液反應(yīng)時(shí)的應(yīng)急預(yù)案及處理方法課件
- 中國(guó)旅游地理(高職)全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論