![【MOOC】交通數(shù)據(jù)挖掘技術(shù)(Data Mining for Transportation)-東南大學 中國大學慕課MOOC答案_第1頁](http://file4.renrendoc.com/view12/M0B/0A/32/wKhkGWdgY0eAPinkAAHN1lmo7b8776.jpg)
![【MOOC】交通數(shù)據(jù)挖掘技術(shù)(Data Mining for Transportation)-東南大學 中國大學慕課MOOC答案_第2頁](http://file4.renrendoc.com/view12/M0B/0A/32/wKhkGWdgY0eAPinkAAHN1lmo7b87762.jpg)
![【MOOC】交通數(shù)據(jù)挖掘技術(shù)(Data Mining for Transportation)-東南大學 中國大學慕課MOOC答案_第3頁](http://file4.renrendoc.com/view12/M0B/0A/32/wKhkGWdgY0eAPinkAAHN1lmo7b87763.jpg)
![【MOOC】交通數(shù)據(jù)挖掘技術(shù)(Data Mining for Transportation)-東南大學 中國大學慕課MOOC答案_第4頁](http://file4.renrendoc.com/view12/M0B/0A/32/wKhkGWdgY0eAPinkAAHN1lmo7b87764.jpg)
![【MOOC】交通數(shù)據(jù)挖掘技術(shù)(Data Mining for Transportation)-東南大學 中國大學慕課MOOC答案_第5頁](http://file4.renrendoc.com/view12/M0B/0A/32/wKhkGWdgY0eAPinkAAHN1lmo7b87765.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
【MOOC】交通數(shù)據(jù)挖掘技術(shù)(DataMiningforTransportation)-東南大學中國大學慕課MOOC答案Test11、【單選題】WhichoneisnotthedescriptionofDatamining?本題答案:【Appropriatestatisticalanalysismethodstoanalyzethedatacollected】2、【單選題】Whichonedescribestherightprocessofknowledgediscovery?本題答案:【Selection-Preprocessing-Transformation-Datamining-Interpretation/Evaluation】3、【單選題】WhichoneisnotbelongtotheprocessofKDD?本題答案:【Datadescription】4、【單選題】Whichoneisnottherightalternativenameofdatamining?本題答案:【Dataharvesting】5、【單選題】Whichoneisnotthenominalvariables?本題答案:【Age】6、【單選題】Whichoneiswrongaboutclassificationandregression?本題答案:【W(wǎng)ecanconstructclassificationmodels(functions)withoutsometrainingexamples.】7、【單選題】Whichoneiswrongaboutclusteringandoutliers?本題答案:【Clusteringbelongstosupervisedlearning.】8、【單選題】Aboutdataprocess,whichoneiswrong?本題答案:【W(wǎng)henmakingdataclassification,wepredictcategoricallabelsexcludingunorderedone.】9、【判斷題】Outlierminingsuchasdensitybasedmethodbelongstosupervisedlearning.本題答案:【錯誤】10、【判斷題】Supportvectormachinescanbeusedforclassificationandregression.本題答案:【正確】Test21、【單選題】Whichisnotthereasonweneedtopreprocessthedata?本題答案:【tomakeresultmeetourhypothesis】2、【單選題】Whichisnotthemajortasksindatapreprocessing?本題答案:【Transition】3、【單選題】HowtoconstructnewfeaturespacebyPCA?本題答案:【NewfeaturespacebyPCAisconstructedbyeliminatingtheweakcomponentstoreducethesizeofthedata.】4、【單選題】Whichoneiswrongaboutmethodsfordiscretization?本題答案:【Clusteringanalysisonlybelongstotop-downsplit.】5、【單選題】WhichoneiswrongaboutEqual-width(distance)partitioningandEqual-depth(frequency)partitioning?本題答案:【Theintervaloftheformeroneisnotequal.】6、【單選題】Whichoneiswrongwaytonormalizedata?本題答案:【Simplescaling】7、【多選題】Whicharetherightwaytofillinmissingvalues?本題答案:【Smartmean#Probablevalue#Ignore】8、【多選題】Whicharetherightwaytohandlenoisedata?本題答案:【Regression#Cluster#WT#Manual】9、【多選題】Whichoneisrightaboutwavelettransforms?本題答案:【TheDWTdecomposeseachsegmentoftimeseriesviathesuccessiveuseoflow-passandhigh-passfilteringatappropriatelevels.#Wavelettransformscanbeusedforreducingdataandsmoothingdata.】10、【多選題】Whicharethecommonusedwaystosampling?本題答案:【Simplerandomsamplewithoutreplacement#Simplerandomsamplewithreplacement#Stratifiedsample#Clustersample】11、【判斷題】Discretizationmeansdividingtherangeofacontinuousattributeintointervals.本題答案:【正確】Test31、【單選題】What'sthedifferencebetweeneagerlearnerandlazylearner?本題答案:【Eagerlearnerswouldgenerateamodelforclassificationwhilelazylearnerwouldnot.】2、【多選題】HowtochoosetheoptimalvalueforK?本題答案:【Cross-validationcanbeusedtodetermineagoodvaluebyusinganindependentdatasettovalidatetheKvalues.#LowvaluesforK(likek=1ork=2)canbenoisyandsubjecttotheeffectofoutliers.#Historically,theoptimalKformostdatasetshasbeenbetween3-10.】3、【多選題】What’sthemajorcomponentsinKNN?本題答案:【Howtomeasuresimilarity?#Howtochoosek?#Howareclasslabelsassigned?】4、【多選題】WhichoneofthefollowingwayscanbeusedtoobtainattributeweightforAttribute-WeightedKNN?本題答案:【Priorknowledge/experience.#PCA,FA(Factoranalysismethod).#Informationgain.#Gradientdescent,simplexmethodsandgeneticalgorithm.】5、【判斷題】AtlearningstageKNNwouldfindtheKclosestneighborsandthendecideclassifyKidentifiednearestlabel.本題答案:【錯誤】6、【判斷題】AtclassificationstageKNNwouldstoreallinstanceorsometypicalofthem.本題答案:【錯誤】7、【判斷題】Normalizingthedatacansolvetheproblemthatdifferentattributeshavedifferentvalueranges.本題答案:【正確】8、【判斷題】ByEuclideandistanceorManhattandistance,wecancalculatethedistancebetweentwoinstances.本題答案:【正確】9、【判斷題】DatanormalizationbeforeMeasureDistancecanavoiderrorscausedbydifferentdimensions,self-variations,orlargenumericaldifferences.本題答案:【正確】10、【判斷題】Thewaytoobtaintheregressionforanewinstancefromtheknearestneighborsistocalculatetheaveragevalueofkneighbors.本題答案:【正確】11、【判斷題】Thewaytoobtaintheclassificationforanewinstancefromtheknearestneighborsistocalculatethemajorityclassofkneighbors.本題答案:【正確】12、【判斷題】ThewaytoobtaininstanceweightforDistance-WeightedKNNistocalculatethereciprocalofthedistancesquaredbetweenobjectandneighbors.本題答案:【正確】Test41、【多選題】Whichdescriptionisrightaboutnodesindecisiontree?本題答案:【Internalnodestestthevalueofparticularfeatures#Leafnodesspecifytheclass】2、【多選題】ComputinginformationgainforcontinuousvalueattributewhenusingID3consistsofthefollowingprocedure:本題答案:【SortthevalueAinincreasingorder.#Considerthemidpointbetweeneachpairofadjacentvaluesasapossiblesplitpoint.#Selecttheminimumexpectedinformationrequirementasthesplit-point.#Split.】3、【多選題】Whichisthetypicalalgorithmstogeneratetrees?本題答案:【ID3#C4.5#CART】4、【多選題】Whichoneisrightaboutunderfittingandoverfitting?本題答案:【Underfittingmeanspooraccuracybothfortrainingdataandunseensamples.#Overfittingmeanshighaccuracyfortrainingdatabutpooraccuracyforunseensamples.#Underfittingimpliesthemodelistoosimplethatweneedtoincreasethemodelcomplexity.#Overfittingoccurstoomanybranchesthatweneedtodecreasethemodelcomplexity.】5、【多選題】Whichoneisrightaboutpre-pruningandpost-pruning?本題答案:【Bothofthemaremethodstodealwithoverfittingproblem.#Pre-pruningdoesnotsplitanodeifthiswouldresultinthegoodnessmeasurefallingbelowathreshold.#Post-pruningremovesbranchesfroma“fullygrown”tree.】6、【多選題】Post-pruninginCARTconsistsofthefollowingprocedure:本題答案:【First,considerthecostcomplexityofatree.#Then,foreachinternalnode,N,computethecostcomplexityofthesubtreeatN.#AndalsocomputethecostcomplexityofthesubtreeatNifitweretobepruned.#Atlast,comparethetwovalues.IfpruningthesubtreeatnodeNwouldresultinasmallercostcomplexity,thesubtreeispruned.Otherwise,thesubtreeiskept.】7、【判斷題】ThecostcomplexitypruningalgorithmusedinCARTevaluatecostcomplexitybythenumberofleavesinthetree,andtheerrorrate.本題答案:【正確】8、【判斷題】GainratioisusedasattributeselectionmeasureinC4.5andtheformulaisGainRatio(A)=Gain(A)/SplitInfo(A).本題答案:【正確】9、【判斷題】Ruleiscreatedforeachpartfromitsroottoitsleafnotes.本題答案:【正確】10、【判斷題】ID3useinformationgainasitsattributeselectionmeasure.AndtheattributewiththelowestinformationgainischosenasthesplittingattributefornoteN.本題答案:【錯誤】Test51、【多選題】WhatthefeatureofSVM?本題答案:【Extremelyslow,butarehighlyaccurate.#Muchlesspronetooverfittingthanothermethods.#Provideacompactdescriptionofthelearnedmodel.】2、【多選題】Whichisthetypicalcommonkernel?本題答案:【Linear#Polynomial#Radialbasisfunction(Gaussiankernel)#Sigmoidkernel】3、【多選題】WhatadaptationscanbemadetoallowSVMtodealwithMulticlassClassificationproblem?本題答案:【Oneversusrest(OVR).#Oneversusone(OVO).#Errorcorrectingoutputcodes(ECOC).】4、【多選題】What'stheproblemofOVR?本題答案:【Sensitivetotheaccuracyoftheconfidencefiguresproducedbytheclassifiers.#Thescaleoftheconfidencevaluesmaydifferbetweenthebinaryclassifiers.#Thebinaryclassificationlearnersseeunbalanceddistributions.】5、【多選題】WhichoneisrightabouttheadvantagesofSVM?本題答案:【Theyareaccurateinhigh-dimensionalspaces.#Theyarememoryefficient.#Thealgorithmisnotproneforover-fittingcomparedtootherclassificationmethod.#Thesupportvectorsaretheessentialorcriticaltrainingtuples.】6、【判斷題】Kerneltrickwasusedtoavoidcostlycomputationanddealwithmappingproblems.本題答案:【正確】7、【判斷題】ThereisnostructuredwayandnogoldenrulesforsettingtheparametersinSVM.本題答案:【正確】8、【判斷題】Errorcorrectingoutputcodes(ECOC)isakindofproblemtransformationtechniques.本題答案:【錯誤】9、【判斷題】Regressionformulasincludingthreetypes:linear,nonlinearandgeneralform.本題答案:【正確】10、【判斷題】Ifyouhaveabigdataset,SVMissuitableforefficientcomputation.本題答案:【錯誤】Test61、【多選題】Whichdescriptionisrighttodescribeoutliers?本題答案:【Outlierscausedbymeasurementerror#Outliersreflectinggroundtruth#Outlierscausedbyequipmentfailure】2、【多選題】Whatisapplicationcaseofoutliermining?本題答案:【Trafficincidentdetection#Creditcardfrauddetection#Networkintrusiondetection#Medicalanalysis】3、【多選題】Whichoneisthemethodtodetectoutliers?本題答案:【Statistics-basedapproach#Distance-basedapproach#Density-basedapproach】4、【多選題】Howtopicktherightkbyaheuristicmethodfordensity-basedoutlierminingmethod?本題答案:【Kshouldbeatleast10toremoveunwantedstatisticalfluctuations.#Pick10to20appearstoworkwellingeneral.#Picktheupperboundvalueforkasthemaximumof“closeby”objectsthatcanpotentiallybelocaloutliers.】5、【多選題】Whichoneisrightaboutthreemethodsofoutliermining?本題答案:【Statistics-basedapproachissimpleandfastbutdifficulttodealwithperiodicitydataandcategoricaldata.#Theefficiencyofdistance-basedapproachislowforthegreatdatasetinhighdimensionalspace.】6、【判斷題】Distance-basedoutlierMiningisnotsuitabletodatasetthatdoesnotfitanystandarddistributionmodel.本題答案:【錯誤】7、【判斷題】Statistic-basedmethodneedstorequireknowingthedistributionofthedataandthedistributionparametersinadvance.本題答案:【正確】8、【判斷題】Whenidentifyingoutlierswithadiscordancytest,thedatapointisconsideredasanoutlierifitfallswithintheconfidenceinterval.本題答案:【錯誤】9、【判斷題】MahalanobisDistanceaccountsfortherelativedispersionsandinherentcorrelationsamongvectorelements,whichisdifferentfromEuclideanDistance.本題答案:【正確】10、【判斷題】Anoutlierisadataobjectthatdeviatessignificantlyfromtherestoftheobjects,asifitweregeneratedbyadifferentmechanism.本題答案:【正確】Test71、【多選題】Howtodealwithimbalanceddatain2-classclassification?本題答案:【Oversampling#Undersampling#Threshold-moving#Ensembletechniques】2、【多選題】Whichoneisrightwhendealingwiththeclass-imbalanceproblem?本題答案:【Smotealgorithmaddssynthetictuplesthatareclosetotheminoritytuplesintuplespace.#Threshold-movingandensemblemethodswereempiricallyobservedtooutperformoversamplingandundersampling.】3、【多選題】Whichstepisnecessarywhenconstructinganensemblemodel?本題答案:【Creatingmultipledataset#Constructingasetofclassifiersfromthetrainingdata#Combiningpredictionsmadebymultipleclassifierstoobtainfinalclasslabel】4、【判斷題】Ensemblestendtoyieldbetterresultswhenthereisasignificantdiversityamongthebasemodels.本題答案:【正確】5、【判斷題】EnsemblemethodcannotparallelizablebecausenoteverybaseclassifiercanbeallocatedtoadifferentCPU.本題答案:【錯誤】6、【判斷題】Togeneratethesingleclassifier,differentmodelmaybeusedtodealwithdifferentdatasubset.本題答案:【正確】7、【判斷題】Inrandomforest,usingar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度花藝師花卉種植基地花卉新品種引進合同
- 2025年國際貨運代理服務及進出口貿(mào)易合同
- 2025年度新型城鎮(zhèn)化道路施工勞務分包合同范本
- 2025年度建筑渣土運輸環(huán)保達標服務合同范本
- 2025年度裝配式建筑構(gòu)件生產(chǎn)與施工包工合同
- 2025年度養(yǎng)老產(chǎn)業(yè)租賃合同與養(yǎng)老服務創(chuàng)新協(xié)議
- 2025年度綠色能源產(chǎn)品采購及銷售合同協(xié)議范本
- 2025年度禮品卡定制化設計與印刷合同
- 2025年度轎車售后服務網(wǎng)絡建設與運營合同
- 2025年度新型化學實驗耗材定制與銷售合同
- 供電企業(yè)輿情的預防及處置
- 【高中語文】《氓》課件++統(tǒng)編版+高中語文選擇性必修下冊
- T-WAPIA 052.3-2023 無線局域網(wǎng)設備技術(shù)規(guī)范 第3部分:接入點和控制器
- 第4課+中古時期的亞洲(教學設計)-【中職專用】《世界歷史》(高教版2023基礎模塊)
- 金點子活動總結(jié)匯報
- 運動技能學習與控制完整
- 原料驗收標準知識培訓課件
- Unit4MyfamilyStorytime(課件)人教新起點英語三年級下冊
- 物流運作管理-需求預測
- 《電機與電氣控制(第三版)習題冊》 習題答案
- 財務管理專業(yè)《生產(chǎn)實習》教學大綱
評論
0/150
提交評論