版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省榆樹一中五校高考仿真卷數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計(jì)圖如下面的條形圖.該教師退休后加強(qiáng)了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計(jì)圖如下面的折線圖.已知目前的月就醫(yī)費(fèi)比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元2.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.3.設(shè),,是非零向量.若,則()A. B. C. D.4.已知是虛數(shù)單位,若,則()A. B.2 C. D.35.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.406.已知,且,則()A. B. C. D.7.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.8.若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.如圖,正方體的棱長為1,動點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值10.已知函數(shù),若對任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件12.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.120二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.實(shí)數(shù),滿足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_______.15.設(shè)的內(nèi)角的對邊分別為,,.若,,,則_____________16.若點(diǎn)在直線上,則的值等于______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出曲線的極坐標(biāo)方程;(2)點(diǎn)是曲線上的一點(diǎn),試判斷點(diǎn)與曲線的位置關(guān)系.18.(12分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時,(1)求橢圓的方程.(2)當(dāng)時,求的面積.19.(12分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.20.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:21.(12分)如圖,在三棱錐中,平面平面,,.點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.22.(10分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點(diǎn)睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實(shí)際問題,屬于基礎(chǔ)題.2、B【解析】
根據(jù)復(fù)數(shù)的除法法則計(jì)算,由共軛復(fù)數(shù)的概念寫出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計(jì)算,共軛復(fù)數(shù)的概念,屬于容易題.3、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對解含垂直關(guān)系的問題往往有很好效果.4、A【解析】
直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.5、C【解析】
設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.6、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.7、B【解析】
設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識,利用向量共線及向量運(yùn)算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.8、B【解析】
復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.10、D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.11、A【解析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題12、A【解析】
對數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選【點(diǎn)睛】本題主要考查了排列,組合及簡單計(jì)數(shù)問題,解題的關(guān)鍵是對數(shù)字分類討論,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角14、【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小值,所以直線也過A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為.等價于點(diǎn)與原點(diǎn)連線的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時,取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.15、或【解析】試題分析:由,則可運(yùn)用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點(diǎn):運(yùn)用正弦定理解三角形.(注意多解的情況判斷)16、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當(dāng)時,則,此時;當(dāng)時,則,此時,綜上,.故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點(diǎn)在曲線外.【解析】
(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標(biāo)方程;(2)由點(diǎn)是曲線上的一點(diǎn),利用的范圍判斷的范圍,即可判斷位置關(guān)系.【詳解】(1)由曲線的參數(shù)方程為可得曲線的普通方程為,則曲線的極坐標(biāo)方程為,即(2)由題,點(diǎn)是曲線上的一點(diǎn),因?yàn)?所以,即,所以點(diǎn)在曲線外.【點(diǎn)睛】本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,考查直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化,考查點(diǎn)與圓的位置關(guān)系.18、(1)(2)【解析】
(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因?yàn)橹本€過點(diǎn),且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因?yàn)?,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點(diǎn)到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因?yàn)橹本€的斜率,所以,因?yàn)橹本€經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點(diǎn)睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計(jì)算,意在考查學(xué)生對這些知識的掌握水平和分析推理計(jì)算能力.19、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時,觀察式子可得恒成立;當(dāng)時,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時,令,由,,根據(jù)零點(diǎn)存在性定理可得,進(jìn)而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進(jìn)而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛比達(dá)法則計(jì)算可得結(jié)論.【詳解】(1)當(dāng),,,,令,解得,當(dāng)時,,當(dāng)時,,在上單調(diào)遞減,在上單調(diào)遞增.(2)解法一:當(dāng)時,函數(shù),若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數(shù),所以,即時滿足題意;若時,令,則,所以在上單調(diào)遞增,,,可知,一定存在使得,且當(dāng)時,,所以在上,單調(diào)遞減,從而有時,,不滿足題意;綜上可知,實(shí)數(shù)a的取值范圍為.解法二:當(dāng)時,函數(shù),又當(dāng)時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調(diào)遞增,,恒成立,從而在上單調(diào)遞增,,由洛比達(dá)法則可知,,,解得.實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比達(dá)法則等知識,注意解題方法的積累,屬于難題.20、(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時等號成立,∴.令,.則在上單調(diào)遞減.∴.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版拌合料生產(chǎn)設(shè)備維修與保養(yǎng)合同4篇
- 2025年度農(nóng)業(yè)休閑觀光區(qū)綠化景觀建設(shè)與運(yùn)營合同4篇
- 2025版安防弱電系統(tǒng)集成服務(wù)合同3篇
- 2025年度個人肖像攝影合同范本集4篇
- 二零二五年度南京體育健身行業(yè)勞務(wù)派遣合同
- 二零二五年度木材行業(yè)安全生產(chǎn)責(zé)任保險(xiǎn)合同
- 第8~9講 反應(yīng)動力學(xué)基礎(chǔ)知識
- 2025年度建筑幕墻工程安全質(zhì)量責(zé)任合同4篇
- 二零二五年度農(nóng)業(yè)生態(tài)環(huán)境保護(hù)與修復(fù)服務(wù)合同
- 二零二五年度使用知識產(chǎn)權(quán)許可合同
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報(bào)告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 康復(fù)醫(yī)學(xué)科患者隱私保護(hù)制度
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質(zhì)量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學(xué)真題試卷(含答案)
- 高中學(xué)校開學(xué)典禮方案
- 內(nèi)審檢查表完整版本
- 3級人工智能訓(xùn)練師(高級)國家職業(yè)技能鑒定考試題及答案
評論
0/150
提交評論