中南民族大學(xué)《神經(jīng)網(wǎng)絡(luò)計算機視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
中南民族大學(xué)《神經(jīng)網(wǎng)絡(luò)計算機視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
中南民族大學(xué)《神經(jīng)網(wǎng)絡(luò)計算機視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
中南民族大學(xué)《神經(jīng)網(wǎng)絡(luò)計算機視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
中南民族大學(xué)《神經(jīng)網(wǎng)絡(luò)計算機視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁中南民族大學(xué)

《神經(jīng)網(wǎng)絡(luò)計算機視覺》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個圖像分類任務(wù)中,如果需要快速進行模型的訓(xùn)練和預(yù)測,以下哪種輕量級模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG2、假設(shè)正在進行一個異常檢測任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以3、欠擬合也是機器學(xué)習(xí)中需要關(guān)注的問題。以下關(guān)于欠擬合的說法中,錯誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說法錯誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會出現(xiàn)欠擬合問題4、在機器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進行一次,后續(xù)不需要再進行調(diào)整和優(yōu)化5、假設(shè)要為一個智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進行推薦,但存在冷啟動和數(shù)據(jù)稀疏問題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過濾和內(nèi)容推薦的優(yōu)點,并通過特征工程和模型融合提高推薦效果,但實現(xiàn)復(fù)雜D.基于強化學(xué)習(xí)的推薦算法,通過與用戶的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢6、在構(gòu)建一個圖像識別模型時,需要對圖像數(shù)據(jù)進行預(yù)處理和增強。如果圖像存在光照不均、噪聲和模糊等問題,以下哪種預(yù)處理和增強技術(shù)組合可能最為有效?()A.直方圖均衡化、中值濾波和銳化B.灰度變換、高斯濾波和圖像翻轉(zhuǎn)C.色彩空間轉(zhuǎn)換、均值濾波和圖像縮放D.對比度拉伸、雙邊濾波和圖像旋轉(zhuǎn)7、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測值與真實值之間的MSE較大,這意味著什么()A.模型的預(yù)測非常準(zhǔn)確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能8、某研究團隊正在開發(fā)一個用于醫(yī)療圖像診斷的機器學(xué)習(xí)模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強的強度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機制D.以上方法都可以9、在一個多分類問題中,如果類別之間存在層次關(guān)系,以下哪種分類方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類B.一對一分類C.一對多分類D.以上方法都可以10、考慮一個情感分析任務(wù),判斷一段文本所表達的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡單直觀,計算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度11、在一個圖像分類任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌??()A.過擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)12、在一個強化學(xué)習(xí)問題中,如果智能體需要與多個對手進行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強化學(xué)習(xí)算法C.策略梯度算法D.以上算法都可以13、在評估機器學(xué)習(xí)模型的性能時,通常會使用多種指標(biāo)。假設(shè)我們有一個二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評估指標(biāo)的描述,哪一項是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好14、假設(shè)我們要使用機器學(xué)習(xí)算法來預(yù)測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預(yù)測結(jié)果幫助較小()A.公司的財務(wù)報表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟指標(biāo)15、在一個無監(jiān)督學(xué)習(xí)問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結(jié)構(gòu)。如果數(shù)據(jù)具有層次結(jié)構(gòu),以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對抗網(wǎng)絡(luò)(GAN)C.層次聚類D.以上方法都可以16、在一個強化學(xué)習(xí)場景中,智能體需要在一個復(fù)雜的環(huán)境中學(xué)習(xí)最優(yōu)策略。如果環(huán)境的獎勵信號稀疏,以下哪種技術(shù)可以幫助智能體更好地學(xué)習(xí)?()A.獎勵塑造B.策略梯度估計的改進C.經(jīng)驗回放D.以上技術(shù)都可以17、機器學(xué)習(xí)是一門涉及統(tǒng)計學(xué)、計算機科學(xué)和人工智能的交叉學(xué)科。它的目標(biāo)是讓計算機從數(shù)據(jù)中自動學(xué)習(xí)規(guī)律和模式,從而能夠進行預(yù)測、分類、聚類等任務(wù)。以下關(guān)于機器學(xué)習(xí)的說法中,錯誤的是:機器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)三大類。監(jiān)督學(xué)習(xí)需要有標(biāo)注的訓(xùn)練數(shù)據(jù),無監(jiān)督學(xué)習(xí)則不需要標(biāo)注數(shù)據(jù)。那么,下列關(guān)于機器學(xué)習(xí)的說法錯誤的是()A.決策樹是一種監(jiān)督學(xué)習(xí)算法,可以用于分類和回歸任務(wù)B.K均值聚類是一種無監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)分成K個聚類C.強化學(xué)習(xí)通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略,適用于機器人控制等領(lǐng)域D.機器學(xué)習(xí)算法的性能只取決于算法本身,與數(shù)據(jù)的質(zhì)量和數(shù)量無關(guān)18、假設(shè)我們有一個時間序列數(shù)據(jù),想要預(yù)測未來的值。以下哪種機器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長短期記憶網(wǎng)絡(luò)(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)19、在構(gòu)建一個機器學(xué)習(xí)模型時,我們通常需要對數(shù)據(jù)進行預(yù)處理。假設(shè)我們有一個包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)20、在一個股票價格預(yù)測的場景中,需要根據(jù)歷史的股票價格、成交量、公司財務(wù)指標(biāo)等數(shù)據(jù)來預(yù)測未來的價格走勢。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡單直觀,但無法處理非線性關(guān)系B.支持向量回歸(SVR),對非線性數(shù)據(jù)有一定處理能力,但對高噪聲數(shù)據(jù)可能效果不佳C.隨機森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長短時記憶網(wǎng)絡(luò)(LSTM),對時間序列數(shù)據(jù)有較好的建模能力,但容易過擬合二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述在生物信息學(xué)中,機器學(xué)習(xí)的應(yīng)用場景。2、(本題5分)什么是元學(xué)習(xí)?它的主要方法有哪些?3、(本題5分)機器學(xué)習(xí)在服裝設(shè)計中的應(yīng)用有哪些?4、(本題5分)簡述機器學(xué)習(xí)在旅游規(guī)劃中的路線推薦。5、(本題5分)談?wù)勗跉庀箢A(yù)測中,機器學(xué)習(xí)的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)通過SVM算法對衛(wèi)星圖像中的土地利用類型進行分類。2、(本題5分)運用回歸模型預(yù)測工廠的生產(chǎn)效率。3、(本題5分)通過神經(jīng)網(wǎng)絡(luò)模型對語音進行識別。4、(本題5分)基于RNN對文本的連貫性進行評估。5、(本題5分)利用GAN生成新的音樂片段。四、論述題(本大題共3個小題,共30分)1、(本題10分)分析機器學(xué)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論