版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023屆內(nèi)蒙古自治區(qū)第一機械制造有限公司第一中學(xué)高考模擬押題卷(金卷二)數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.12.若函數(shù)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.3.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π4.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.5.函數(shù)在的圖象大致為()A. B.C. D.6.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲7.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.8.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.19.國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%10.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了11.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④12.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為_____________.14.已知實數(shù)滿足則點構(gòu)成的區(qū)域的面積為____,的最大值為_________15.記等差數(shù)列和的前項和分別為和,若,則______.16.棱長為的正四面體與正三棱錐的底面重合,若由它們構(gòu)成的多面體的頂點均在一球的球面上,則正三棱錐的內(nèi)切球半徑為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了拓展城市的旅游業(yè),實現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)橢圓:()的離心率為,它的四個頂點構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.19.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.20.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.21.(12分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.22.(10分)新型冠狀病毒肺炎疫情發(fā)生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業(yè)績,某公司設(shè)計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點進行試點.運作一年后,對“采用促銷”和“沒有采用促銷”的營銷網(wǎng)點各選取了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點及以上的營銷網(wǎng)點為“精英店”.(1)請你根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“精英店與采用促銷活動有關(guān)”;采用促銷沒有采用促銷合計精英店非精英店合計5050100(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)的一組數(shù)據(jù)后決定選擇作為回歸模型進行擬合.具體數(shù)據(jù)如下表,表中的:①根據(jù)上表數(shù)據(jù)計算的值;②已知該公司成本為10元/件,促銷費用平均5元/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達(dá)到最大.附①:附②:對應(yīng)一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.2.B【解析】因為對A不符合定義域當(dāng)中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當(dāng)中的一個元素對應(yīng)值域當(dāng)中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因為值域當(dāng)中有的元素沒有原象,故可否定.故選B.3.D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.4.C【解析】根據(jù)命題的否定,可以寫出:,所以選C.5.B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.6.D【解析】
根據(jù)雷達(dá)圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.7.A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.8.C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.9.D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.10.C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.11.D【解析】
因為,所以①不正確;因為,所以,,所以,所以函數(shù)的圖象是軸對稱圖形,②正確;易知函數(shù)的最小正周期為,因為函數(shù)的圖象關(guān)于直線對稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時,,且,令,得,可知函數(shù)在處取得極大值為,③正確;因為,所以,所以函數(shù)的最小值為,④正確.故選D.12.B【解析】
設(shè),則,可得,即可得到,進而找到對應(yīng)的點所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點為,在第二象限.故選:B【點睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點所在象限,考查復(fù)數(shù)的模,考查運算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識,屬于基礎(chǔ)題.14.811【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.15.【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.16.【解析】
由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側(cè)棱長,可得正三棱錐的三條側(cè)棱兩兩相互垂直,進而求出體積與表面積,設(shè)內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設(shè)三角形的外接圓的半徑為,則,解得,設(shè)外接球的半徑為,則可得,即,解得,設(shè)正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側(cè)棱兩兩相互垂直,所以,設(shè)內(nèi)切球的半徑為,,即解得:.故答案為:.【點睛】本題考查多面體與球的內(nèi)切和外接問題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據(jù)公式計算卡方值,再對應(yīng)卡值表判斷..(2)根據(jù)題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因為至少8個的偶數(shù)個十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個路口中有個路口種植楊樹,下面分類討論①當(dāng)時,由論證.②當(dāng)時,由論證.③當(dāng)時,,設(shè),再論證當(dāng)時,取得最小值即可.【詳解】(1)本次實驗中,,故沒有99.9%的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因為,所以.設(shè)個路口中有個路口種植楊樹,①當(dāng)時,,因為,所以,于是.②當(dāng)時,,同上可得③當(dāng)時,,設(shè),當(dāng)時,,顯然,當(dāng)即時,,當(dāng)即時,,即;,因此,即.綜上,,即.【點睛】本題考查獨立性檢驗、離散型隨機變量的分布列以及期望、排列組合,還考查運算求解能力以及必然與或然思想,屬于難題.18.(1);(2)證明見解析.【解析】
(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點,,,由,,結(jié)合斜率公式化簡得出,,即,滿足,由的任意性,得出直線恒過一個定點.【詳解】(1)依題意得,解得即橢圓:;(2)設(shè)點,,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個定點.【點睛】本題主要考查了求橢圓的方程,直線過定點問題,屬于中檔題.19.(1)見解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設(shè)幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計算能力.20.(1)見解析;(2).【解析】
(1)對求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時,轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因為,,所以,存在使得,即.所以,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù),故當(dāng)時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時,為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時,有兩個不同的零點,,且,即,若時,為減函數(shù),(*)若時,為增函數(shù),所以的最小值為.注意到時,,且此時,(?。┊?dāng)時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時,,所以,所以由(*)知時,為減函數(shù),所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運算能力,屬于較難題.21.(1),(1,2);(2)存在,【解析】
(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點Q的坐標(biāo)為拋物線的焦點坐標(biāo),由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度寵物養(yǎng)護服務(wù)中介擔(dān)保服務(wù)條款3篇
- 2024-2030年中國垃圾發(fā)電行業(yè)發(fā)展困境與十三五投資建議報告
- 2024年物業(yè)管理合作協(xié)議模板6篇
- 2024年機器操作安全合同3篇
- 滿洲里俄語職業(yè)學(xué)院《進出口業(yè)務(wù)實操二》2023-2024學(xué)年第一學(xué)期期末試卷
- 漯河醫(yī)學(xué)高等??茖W(xué)?!毒频旯芾硇畔⒒浖嶒灐?023-2024學(xué)年第一學(xué)期期末試卷
- 2024套房智能家居系統(tǒng)設(shè)計與安裝服務(wù)合同
- 2025微博微信廣告發(fā)布合同書
- 單位人力資源管理制度品讀選集
- 解除勞動合同通知書(僅用于失業(yè)金領(lǐng)取-單位保留)、(僅用于失業(yè)金領(lǐng)取-個人版)、(協(xié)商解除)、離職證明
- 吃書的狐貍(繪本PPT)
- 安全生產(chǎn)控制程序
- 供應(yīng)商開發(fā)計劃表
- 第4章-長基線水聲定位系統(tǒng)(LBL)
- 先張法預(yù)應(yīng)力混凝土管樁基礎(chǔ)技術(shù)規(guī)程
- 加工合同模板
- 高爾夫文化與禮儀慕課測驗作業(yè)答案
- (完整版)認(rèn)知功能成套測驗操作手冊
- 最新快遞公司勞動合同模板
- [高一政史地]關(guān)于紹興老地名的研究性學(xué)習(xí)結(jié)題報告
評論
0/150
提交評論